

Imaging for Proton Treatment Planning

Jon J. Kruse Mayo Clinic, Rochester MN AAPM Annual Meeting, 2018

Acknowledgements

- Amanda Deisher, Mayo Clinic
- Edgar Gelover Reyes, Johns Hopkins (formerly Mayo)
- Vicki Taasti, Memorial Sloan Kettering

鬱

Outline

- Impact of Geometric Errors
- Calibrating CT for Proton Dose Calculation
- · Potential Improvements in Stopping Power Measurements
- Clinical Examples of Anatomical Changes

<u>وم</u>

Setup and Volume Variations

6

而

Setup and Volume Variations

Lateral Shift in BEV

Setup and Volume Variations

Setup and Volume Variations

Setup and Volume Variations

Setup and Volume Variations

而

Photon Planning: Relative Electron Density

- Scan commercial phantom with known RED
- Measure HU in scan

 Enter HU-RED curve in photon planning system

÷

Proton Planning: Stopping Power

Proton stopping power comes from Bethe-Bloch equation:

$$S = \frac{4\pi}{m_e c^2} \frac{n^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2 \beta^2}{(1)} - \beta^2\right)\right] - \beta^2$$

- n is electron density of the medium
- · I is ionization potential of the medium
- HU RSP degeneracies
- Phantom materials are not like human tissues
- Stoichiometric Calibration Process

贾

Stoichiometric Calibration

1. Measure HU of materials with known RED

- Plugs have well known RED values
- Elemental composition not tissue equivalent
- Scan one plug at a time in center of phantom
- · Use fixed, clinical CT protocol

Schneider et al., PMB 1996

艷

Stoichiometric Calibration

2. Parameterize CT Scanner by Fitting HUs

	 Ž and Ž are material properties for photoelectric and Compton
$HU_{sc} = \rho_{e-}^{rel} (A \cdot \tilde{Z} + B \cdot \hat{Z} + C)$	Scanner parameters: A: photoelectric
	 B: Compton
	 C: Klein-Nishina

Schneider et al., PMB 1996

- 660

Stoichiometric Calibration

Con ICo							-			111100												
Rev. January 29, 2013											Phys. Med. Box. 59 (20	14) 2054								Ā	E Board	
CIRS Models 062X	11 A 24	seue-er bafo	quivah Ine Nor	ent ma vembe	terials r 2011.	eleme	ental o	ompos	ition d	ita	Tak	de 4. E das titre	ectron densit reference use	ies and only).	ektrict	tal con	npean	es of t	he Ga	nnex	467 pl	wark on
											Phastore modian	~	p (g cm ⁻²)	н	C	N	0	Mg	Si	Р.	Ω	$\mathbf{C}_{\mathbf{A}}$
		Percen	fage t	v Wei	aht						Water	1.000	1.000	11.19			\$8.81		12		223	
Description	c	0	H.	N	Ca	Р.	CI	8	Ba	Density,	LN450 http	0.292	0.490	8.46	99.37 99.56	1.96	18.14	11.21	0.58		0.10	
Areast 50/60	70.3	17.0	9.6	19	0.0	0	0.2	0	0	0.951	AP6 adaptise timme	0.950	0.948	9.06	72.29	2.25	16.27				0.13	2.2
vinne	713	26.6	10.0	18	0.3		0.2	0		0.950	DICI2 IVIAG	0.000	1.000	6.79	10.10	2.33	11,90				0.13	
Insbecular bone	56.3	22.7	7.0	2.0	8.5	3.3	0.2	Ū.	6	1.161	CT SHILL WHET	1.061	1.007	8.00	67.00	2.74	19.57				0.14	
200 major HA											LV1 IVER	1,064	1.092	8.06	62.01	2.47	20001				0.14	- 2.7
Dense bone 800	40.8	25.9	5.7	1.0	17.9	8.3	0.03	0.07	0.28	1.530	CR1 - 305-C-CD-	1.760	1.134	6.68	43.47		15.61				0.11	120
mpice HA											CR1-505-C+C0	1.471	1.561	4.77	11.61	1.57	12.00				0.04	20.0
tver	05.4	17.1	9.0	2.1	2.2	0	0.5	0	8	1.072	SEL conticul home	1.606	1.973	3.41	78.41	194	16.40				0.04	26.6
Lung (inhale)	67.5	18.6	8.8	3.5	0	0	1.6	0	0	0.195	R200 mission bone	1.104	1.1.89	6.65	55.41	1.94	11.64			1.24	0.11	
Lung (exhale)	66.0	20.4	8.9	2.4	1.7	0	0.6	0	0	0.51	IB) inter hour	1.069	1.136	6.67	55.65	1.96	23.42			121	0.11	8.8
Munche	69.7	16.8	9.1	21	2.2	0	0.1	0	0	1.052	THE MARK COM	1,000	111100	0000	100.00	1	1101	_	_	2.002		
Plastic Water	68.72	17.09	9.55	1.65	2.18	0	0.15	0	0	1 0 16												
(Diagnostic)																						
Bone 1000 mg/oc HA	35.4	29.4	4.5	1.2	19.9	9.2	0.04	0.08	0.33	1.66												
Bone 1250 implice HA	28.8	32.0	3.6	1.1	23.3	10.8	0.04	0.08	0.32	1.83												
Bone 1500 mg/oc HA	22.9	33.9	2.9	0.9	28.7	12.4	0.03	0.08	0.26	2.01												
Bone 1750 mglos HA	17.9	35.6	23	0.7	29.6	13.7	0.02	0.05	0.20	2.16												

Ť

Stoichiometric Calibration

rarameter	Value
K ^{ph}	8.68×10 ⁻⁶ (-1.668×10 ⁻⁵ , 3.404×10 ⁻⁵)
Kcoh	0.003356 (-0.003138,0.00985)
KKN	0.8814 (0.717,1.046)

Final values: $\mathsf{K}^{\textit{ph}}{=}3.404{\times}10^{-5}$, $\mathsf{K}^{\textit{coh}}{=}0.0002$ and $\mathsf{K}^{\textit{KN}}{=}0.8814$

Stoichiometric Calibration

3. Calculate Predicted HU for ICRU Tissue

 $HU_{sc} = \rho_{e-}^{rel} (A \cdot \tilde{Z} + B \cdot \hat{Z} + C)$

κu	1.1	ľ	SS	116	25											
										0		10	_		_	÷
		58.8			-	_		_		- 0.5	-	-	_		1,000	
-	10.2			P4.0										1.64	1.00	1.013
	10.987	54.5	22	24.2										1.64	18.005	11.84
	16.6	20.2		52.3		6.5				- 0.5				1.62		1.625
	10.004			N2												
		18.5		60.0		- 61	8.7			0.5				1.61	1.048	1.01
	1.00.0			20.0												
	10.5	12.1		72.4										1.00	1.004	
-	10.65			72.4										144	12.045	1.14
	10.2									0.2				1.06	1.00	1.014
	1198.5	10.5		74.5						0.0				1.05	1.041	1.844
-				83.2						- Q.H						1.825
	11102	54.3												1.65	1.04	1.044
	16.5	8.3		- N.4										1.65	1.042	
	124	16.8	22	83.4		6.2	8.2		1.1	0.2				1.64	1.008	1.841
		. 55		74.4			8.5			0.00					1.067	1.001
	11985	- 414		- 43 5		- 01				02					1.027	3.041
	4.5	43.4		36.7				6.1		- 42						1 154
			97	23.1										8.88	10.002	1417
	10	29.4		64.0		61	8.2			0.3	4.1			1.69		1.044
	199.7		32	24.5		6.5	8.5		82	02	8.7			1.05	1,054	3,854
	704			76.6		6.5			6.2	- 02	8.2			1.64	1.002	185
-	10.954		2.4	24.6										1.64	1.045	186
	3.4	18.8	4.2	-	22.5	96.5	.,	6.2						1.62	1.791	1.754
ne-caile		212		-0.5	17.5	6.	8.5	62	6.2					1.61	1.597	14
na hany		345	2.5	31.0	12.9	55	8.5	0.1	8.2	0.5				3.33	1,273	1,201
-		21.4		21.5	15.2		8.5	- 01	8.2					1.40	1.30	1.37
na-nadik	45	19.5	4.3	43.5	98.7	8.5	8.1	62	8.3					1.68	1.577	1.534
	1.64	25.2	2.9	0.	12.5		8.5	0.1	6.2	0.5	8.7			141	1.007	1.329
	5.6	12.6		- 61.6	11.6	1.0		- 6.7	6.5	- 0.5				1.62	1.647	3.413
	2.4	20.2	37	- 0.0	2.8	4.5			4.2	193		8.5		1.29	1,248	123
	85	42.4	28	26.7	2.4	24	8.1	61	6.2	02	6.7	0.1		1.10	1.15	1.16
	6.2	25.5	2.9	-0.0	10.3	61	8.5	- 0.7	8.2	0.5		8.9		142	1.203	9,337
					20	16	15	11		11		28	63			
	10075	12811	14,005	35,995	40.08	24,975	22,949	24,542	32465	35.45	75.656	55,845	100.564			

畿

Stoichiometric Calibration

4. Calculate Relative Stopping Power for Reference Tissues

- I is ionization potential for material
 I is assumed to be ~ 75 eV for
- water
- More uncertainty in I for other materials

Schneider et al., PMB 1996

Stoichiometric Calibration

5. Plot Relative Stopping Power vs. Calc. CT

Nominally fit to bi-linear curve
 More segments used in soft tissue
 region to cover tissues with differing
 H composition

Schneider et al., PMB 1996

歌

Experimental Verification of HU to RSP

Every chef and every proton physicist should be friends with their butcher

8

Experimental Verification of HU to Sp

Every chef and every proton physicist should be friends with their butcher

С.

Experimental Verification of HU to Sp

Experimental Modification of HU/RSP

Experimental Modification of HU/RSP

Clinical Impact of Change in RSP: Prostate

Clinical Impact of Change in RSP: Prostate

Clinical Impact of Change in RSP: CSI

- E

Clinical Impact of Change in RSP: CSI

Rediff Transition (sCl	-	We have brief with 1 day Rougers Managers have been been been dependent from 1998 have per and others we workpation day	
	1	-	
s .			<u>c</u> -
C. Same	- 2	* -/	Ē
Ander Ander yck	A	t September	

	MCR	Curve	New	Curve	DVH Report			
	Max	Mean	Max	Mean	D1%			
	[Gy]	[Gy]	[Gy]	[Gy]	[Gy]			
Constrictors	12.58	3.77	11.70	3.02	24			
Esophagus	16.03	4.29	15.15	3.81	24			

Uncertainties in HU to SP

- Fitting experimental results for planning system curve
- Degeneracy in SP values for tissues with same HU
- HU value uncertainty
 - Technique
 - Position in scanner
 - Artifact
- Uncertainties in mean excitation value
- Variations in human tissue composition
- Expected Range Uncertainty: ~3.5% + 1 mm

Ŧ

Patient Outside FOV

Barrett, Radiographics 2004

Barrett, Radiographics 2004

Manual Artifact Reduction

勞

Potential Improvements in RSP Measurement

- Dual Energy CT
- MegaVoltage CT
- Proton CT

MVCT

Proton CT

Johnson et al., Physics Procedia, 2017

Robust Treatment Planning

- Geometric and range uncertainties are estimated at time of planning
- Treatment plans are optimized in a way to account for range and setup variations
- A robust plan provides CTV coverage and critical organ sparing in presence of errors
- Physicians review coverage of CTV in light of expected variations

Robust Optimization

Robust Plan Evaluation

Patient Contour Variations

- Range uncertainty also arises from changes in patient external contour
 - Variations in posterior tissue on immobilization device
 - Folds in posterior neck
 - Excess adipose tissue in pelvis

쮕

CT Guided SBRT

쮖

CT Guided SBRT

韻

Tx Image Registration

CT Guided SBRT

而

Verification Dose

Posterior Neck Variation

Prostate SBRT

÷

Prostate SBRT

Pre-Treatment Registration

Prostate SBRT Variation

Conclusion

- Converting HU to RSP is not trivial
- Increasing our knowledge of stopping power is important, but not the only concern
 - A clinically viable plan already has lots of margin in the beam direction
 - Anatomical variation is a much greater variable than error in stopping power
- Critical to validate anatomy before Tx (Dr. Winey)
- Ideally validate dose after Tx (Dr. Polf)