# Image Guidance for Proton Therapy

Brian Winey, Ph.D. Medical Physicist, MGH Assistant Professor, HMS



#### Acknowledgements

Research grant from Elekta

RADATION ONCOLOGY

#### Introduction

- Current Imaging Technologies
  - 2D
  - 3D: CT and CBCT
- Review Current Imaging/Adaptive Workflows
  - Adaptive workflows
  - Adaptive: Methods, imaging, planning

# **Current Imaging Technologies**

- 2D Imaging
  - Anatomy: 2D/2D
  - Fiducials (Cranial/Prostate)
  - Gray Scale: 2D/3D
- CBCT
- CT
- Surface



MEDICAL SCHOOL

# **2D Imaging Options**

- All proton therapy centers have 2D imaging capabilities
  - Fixed to room, Couch, or Gantry
  - Remains the most common imaging technique



# **3D** Imaging options

- CBCT:
  - Varian CBCT
  - IBA CBCT (x2)
  - MedPhoton
  - Forte



# 3D Imaging options



# Needs: Anatomical Variations



## Needs: Image Guidance

- In photon therapy, geometric alignment of anatomy is generally a good surrogate for dose
- In proton therapy, geometric alignment does not guarantee dosimetric delivery
- Need to understand the WEPL



### Patient Needs/Demonstrated Benefits

- Imaging benefits and technological requirements vary with patients, motion extent, disease site, margins, clinical endpoints, reproducibility, immobilization, etc
- Benefits of various imaging techniques:
  - Treatment accuracy (3D>2D for many locations)
  - Real-time monitoring of patient/lesion positions
  - Adapting treatment



#### What should we do?

- Imaging Priorities: Variable for Patients/Sites
  - Accuracy
  - Image Quality: Bones or soft tissue?
  - Margins
  - Robust planning
- Patient Logistics and Comfort
  - Timing
  - Workflow



|                                                                                                                                                                       | Site            | 2D Orthogonal X-Ray                                                              | CT / CBCT                                                | Surface Imaging                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|
| Green = Good<br>Yellow = Possible<br>Orange = inferior<br>Only CT/CBCT<br>can provide<br>WEPL<br>information to<br>the target.<br>Surface and 2D<br>imaging require a | Breast          | Chest wall with bony surrogate,<br>Use Surface Imaging                           | Dose concern: lower dose<br>CT/CBCT protocols            | Regular Use                         |
|                                                                                                                                                                       | CNS- Pediatrics | 2D/3D alignment                                                                  | Dose concern: lower dose<br>CT/CBCT protocols            | Open Masks, Supine                  |
|                                                                                                                                                                       | CNS- elsewhere  | 2D/3D alignment                                                                  |                                                          | Open Masks, Supine                  |
|                                                                                                                                                                       | CSI             | Bony surrogates                                                                  | Dose concern: lower dose<br>CT/CBCT protocols            | Demonstrated, Prone                 |
|                                                                                                                                                                       | H&N             | 2-3 mm uncertainty with bony<br>surrogates, Limited knowledge<br>of deformations | Soft tissue beneficial for<br>deformations               | Open Masks                          |
|                                                                                                                                                                       | Lung            | Bony anatomy is poor surrogate<br>unless target is fixed                         | Soft tissue visualization<br>necessary, Motion Artifacts | Gating Only                         |
| surrogate model<br>based on a                                                                                                                                         | GI              | With implanted fiducials                                                         | Soft tissue visualization<br>necessary, Motion Artifacts | Gating Only                         |
| reference 3D<br>image.                                                                                                                                                | Spine           | Bony target well localized                                                       |                                                          | Poor Surrogate,<br>Monitor Position |
| *Statements based<br>upon clinical<br>experience, photon<br>publications, and<br>proton publications                                                                  | Prostate        | With implanted fiducials                                                         | Soft tissue visualization<br>necessary, but challenging  | Poor Surrogate,<br>Monitor Position |
|                                                                                                                                                                       | Extremities     | Well localized by bony<br>surrogate but difficult to align                       | Prefer 3D imaging with large<br>field of view for setup  | Demonstrated                        |
|                                                                                                                                                                       | SRS             | 2D/3D alignment                                                                  |                                                          | Open Masks                          |
|                                                                                                                                                                       | SBRT Lung       | Bony anatomy is poor<br>surrogate, large margins                                 | Soft tissue visualization necessary                      | Gating Only                         |
|                                                                                                                                                                       | SBRT Spine      | 1 mm accuracy challenge                                                          |                                                          | Poor Surrogate                      |



## What should we do?

- In-room, each with impact on workflow:
  - kV systems: fluoro tracking, 2D/2D, 2D/3D
  - Surface Imaging
  - CT (on wheels/tracks, on rails)
  - CBCT: C-arm, Gantry, Couch mounted
- Out of room:
  - CT: challenge of timing and position accuracy



#### **Best Imaging for Proton Therapy?**

- Toward the goal of adaptive proton therapy, volumetric imaging is required\*.
- CT and CBCT are the current best options for accurate setup and adaptive workflows
- Supplemented by 2D and surface imaging

\*Ultrasound and MR not yet demonstrated for proton dose calculations or geometric accuracy

RADATION OCCOLOGY

# СТ

- CT: In room or outside Tx room
  - High Image Quality, 4D options
  - Workflow, time, robotic motions
  - Non treatment position
  - Commissioning similar to CTs:
    - Calibration of isocenters
    - Robotic/CT motion accuracy
  - Hardware shutdown?
- Use in Adaptive workflows has been published: MDACC and utilized at many centers (PSI and Mayo in room. Penn, MGH, MDACC, etc offline)

9



Lei Dong

MEDICAL SCHOOL

# CT In the Room

- Mayo: CT on Rails
- Frequently used for patient setup and plan assessment
- Surface imaging to track patient
- 2D at iso when needed



### CBCT

#### CBCT:

- Workflow, time
- Lower image quality
- Treatment position (or close)
- Same isocenter (typically)
- 4D Imaging is challenging
- Commissioning similar to photon clinic:
  - Biggest difference is Proton/CBCT isocenter coincidence-> Film or scintillator
  - HU to RSP for dose calculations?
  - Couch mounted: Robotic accuracy

RATEAL INSTITUL RATEAL INSTITUL ROOM OF COLORY

## **CBCT Workflow and Time**

#### Couch mounted

- Faster than Gantry rotation
- Not limited to a single imaging position
- Large FOV
- Complex calibration
- Image during Tx
- Gantry Mounted
  - Simple Calibration
  - Half-rotation Gantries: small FOV



MEDICAL SCHOOL

# **CBCT** Image Quality

- Artifacts: streaks, scatter, beam hardening
- HU Accuracy
- Geometric Accuracy/Gantry Flex
- Motion



# **CBCT** Developments

- Scatter reduction
- HU calibration
- Diagnostic Scanners (Toshiba 16 cm axial FOV scanner)
- Gantry isocenter callibrations
- Motion: iterative, etc



Aquilion ONE VISION 0.5 mm x 320 detector 640 slices every rotation 16 cm of every rotation 0.275 sec/rotation

MEDICAL SCHOOL

Artifact Correction Methods

9

- Software
  - Deform CT to CBCT
  - A priori CT scatter correction
  - Scatter Model (low frequency)
  - HU Look Up Table (LUT)
- Hardware
  - Anti scatter grids
  - Filtration

RAINATION ONCOLOGY

# **Correction Methods**

- Deform CT: Data from Kevin Teo (Penn)
  - Multiple publications (Penn and LMU Munich)



# **Correction Methods**

- Deform CT
  - Challenges when anatomy changes too much, especially with air cavities



# A priori Method\*

- Niu et al (Med Phys 2010) using *a priori* CT information and scatter kernel
- Reconstructions with RTK
- Compared to a uniform scatter correction model and baseline CBCT



# Dose Comparison: Phantoms



# **Correction Methods**

Deform versus a priori



# **Patient Dose Calculations**





# A Priori Method

- Current Limitation is time
- Generally found to have HU accuracy within 3% and WEPL accuracy within 2-3 mm.
- Beam hardening still needs addressed



# CBCT Applications: Head and Neck Variations



# **CBCT Applications:**





# **CBCT** Applications:

Triage (U Penn)



# **CBCT** Applications:

- Triage (multiple possibilities)
- Dose Calculation
- Range verification
- Replanning... Not yet



# Needs for Adaptive Proton Therapy

- Framework to support imaging and replanning
- Imaging information
- Treatment planning
  - Rapid dose calculation (GPU now validated)
  - Rapid optimization (Research projects, easier once an optimized plan exists)

# Workflow: Quasi Adaptive (aka Brute Force) Offline Imaging





### Adaptive Workflow: Online Imaging



We have addressed the dose delivery assessment and have begun to look at optimization methods

MANAGEMENT IN CONCOLOGY

# Replanning

GPU Dose Calculation

#### Reoptimize?



# Current Trends for Adaptive Proton Therapy

- Robust treatment planning: reduce the need for adaption
- Imaging: 3D and tracking
- In vivo range imaging: feedback



### Robustness

- Is adaptive proton therapy required?
- What are the limits of robust planning?
- Uncertainty models: range and setup
- Motion? Deformations? Weight loss?
  Less predictable anatomic changes

RANGE CHOSET RANGE AND A COLOCY

## Conclusions

- CT and CBCT are becoming more available and demonstrated as useful tools for setup and adaptive proton therapy: Imaging (CT and CBCT, dose calculations, planning)
- CBCT is now useable for WEPL and dose calculations with 2-3 mm uncertainties
- Further research is needed for CBCT, 4D imaging, workflows, efficiency

# Thank You!



http://gray.mgh.harvard.edu

