Treatment Planning Considerations for Adaptive Radiotherapy

Jackie Wu, Ph.D. Department of Radiation Oncology Duke University

Acknowledgement

Taoran Li, PhD	(U Penn)				
W Robert Lee, MD	(Duke)				
Bridget Koontz, MD	(Duke)				
Fang-Fang Yin, PhD	(Duke)				
Yang Sheng, PhD	(Duke)				
Siming Lu, MS	(MSKCC)				
Danthai Thongphiew, PhD (ECU)					
Xiaofeng Zhu, PhD	(Georgetown)				
Jennifer O'Daniel, PhD (Duke)					

Wu et al, Cancer Journal 17:182-189, 2011

Li et al, Phys Med Biol. 2011 Mar 7;56(5):1243-58.

1999/1/2

Benefits: Efficiency Improvement

From Challenges to Tools

Addressing Inter-fractional Change

Mohan et al. 2005

LP Fluence Opt. Based on Sturctures. Wu et al. 2008

Knowledge-Guided Plan Adaptation

- Step 1. Deformable registration of Daily and Planning CT images
 - Warping planned dose to changed anatomy
 - Known Goal dose
- Step 2. Auto-optimization
 - Known optimization parameter settings
- Step 3. Knowledge based plan quality QA
 - known plan quality parameters

Thongphiew et al, *Med Phys* 36:1651-1662, 2008 Li et al, *Med Phys* 40, 111711, 2013

Step 1. Deform the Original Dose for New Anatomy

Li et al, Med Phys 40, 111711, 2013

11/1/

Dose Atlas Guiding Optimization

- Features of all cases covered by only 5 atlas
- New anatomy matched to nearest atlas
- Deformable Registration used to apply atlas dose to new anatomy
- Goal dose guides optimization

Sheng and Li et al, Phys. Med. Biol. 60 (2015) 7277

Knowledge-Guided Plan Adaptation

- Step 1. Deformable registration of Daily and Planning CT images
 - Warping planned dose to changed anatomy
 - Known Goal dose

Step 2. Auto-optimization

- Known optimization parameter settings
- Step 3. Knowledge based plan quality QA
 - known plan quality parameters

Thongphiew et al, Med Phys 36:1651-1662, 2008

Step 2. Re-optimization

Knowledge-Guided Plan Adaptation

- Step 1. Deformable registration of Daily and Planning CT images
 - > Warping planned dose to changed anatomy
 - Known Goal dose
- Step 2. Auto-optimization
 - Known optimization parameter settings
- Step 3. Knowledge based plan quality QA
 - Known plan quality parameters

Zhu et al, Med Phys 38:719-726, 2011

Addressing Intra-fractional Change

- Online Adaptation = 0 Margin?
 - Inter-fractional motion can be managed with plan adaptation
 - Intra-fractional motion requires tracking or additional margin
- SV motion as example
 - Prostate tracking: simple with fiducial markers
 - > SV tracking: difficult & requires margin

3999777

Inter-fractional SV Motion

Quantifying Intra-fractional Motion

Margin: 5 mm for SV Alone

5mm: selected as minimal margin for sufficient coverage

	SV volumetric coverage distribution for each isotropic margin							
VOLUMETRO COVERIGO	1 0.95 0.9 0.8 0.7 0.8 0.5 0.4 0.3 0.4 0.3 0.2 0.1	1 - -	• • •	•••••••••••••••••••••••••••••••••••••••	-		•	
	ņ.	1000	2mm	3mm Mor	4mm gin	Smm	Brnen	
Sheng et al, IJROBP June 20					2017			

Margin: Surrogate Underestimates

Margin determined from surrogates

- > Using popular Van Herk's recipe
- Based on motion estimated from COM and Border

Van Herk Margin					
	LR	AP	SI		
Center of Mass	0 mm	0.5 mm	0.8 mm		
Border	1.2 mm	3.9 mm	2.5 mm		

Sheng et al, IJROBP June 2017

Predicting SV Coverage via IGRT

- SV Coverage Prediction via Regression
 - Based on fractional coverage data
 - Established in a way for simple clinical implementation during IGRT
 Using COM
 Using border

Sheng et al, IJROBP June 2017

From Challenges to Tools When to Adapt Daily Evidence-Based Decision Making How to Adapt Knowledge-Guided Re-Plan Margin based on Intra-fx Motion How to Verify Quality Assurance

From Challenges to Tools

