Treatment Planning Considerations for Adaptive Radiotherapy

Jackie Wu, Ph.D.
Department of Radiation Oncology
Duke University

Acknowledgement

Taoran Li, PhD (U Penn)
W Robert Lee, MD (Duke)
Bridget Koontz, MD (Duke)
Fang-Fang Yin, PhD (Duke)
Yang Sheng, PhD (Duke)
Siming Lu, MS (MSKCC)
Danthai Thongphiew, PhD (ECU)
Xiaofeng Zhu, PhD (Georgetown)
Jennifer O’Daniel, PhD (Duke)

Key Elements Of ART

Tx Planning Considerations for ART

- Complicated & Resource-Intensive: When to Adapt
- Goal of Adaptation not Well Defined: How to Adapt
- Current QA Protocol Time Intensive: How to Verify

When to Adapt?

- Efficient & Effective
 - High Efficiency: use when sufficient
 - Less Effective: use when necessary

ART == A(adaptive) (IG)RT

If multiple found, select the one with the smallest PTV

- Treatment Using the Plan from Database
 - Yes
 - No

- Treatment Using New Plan from Re-Optimization

Li et al., Physics in Medicine and Biology 56:1243-1258, 2011
Benefits: Target (CTV) Coverage

Ranges and Means of D99 (Minimal Dose to 99% CTV)

25/180 Re-Positioning plans has large target underdose

ART can substantially improve target coverage.

Li et al, Phys Med Biol. 2011 Mar 7;56(5):1243-58

Results: OAR Sparing

Histogram of Difference from the "Gold Standard"

Better Controlled OAR Irradiation than Re-Positioning

Benefits: Efficiency Improvement

Reduction: 43% avg.
Delivered Plans: No QA needed

Substantially reduced re-optimization necessity
½ Re-Optimizations, Same Quality

- Improved OAR Spacing Compared to Re-Positioning
- Uncompromised daily CTV Coverage (D99 > 98%)
- Reduced Re-Optimization Frequency by 43%

From Challenges to Tools

- When to Adapt
 - Daily Evidence-Based Decision Making
- How to Adapt
 - Motion Management
- How to Verify
 - Online Quality Assurance

Addressing Inter-fractional Change

- Fluence-map Deformation Based on BEV Mohan et al. 2005
- Direct-Aperture-Def. Based on BEV Feng et al. 2006
- LP Fluence Opt. Based on Structures Wu et al. 2008
- MLC Position Shift Based on BEV Court & Dong et al. 2005
- Aperture morphing Based on BEV Ahunbay et al. 2008
Knowledge-Guided Plan Adaptation
• Step 1. Deformable registration of Daily and Planning CT images
 ➢ Warping planned dose to changed anatomy
 ➢ Known Goal dose

• Step 2. Auto-optimization
 ➢ Known optimization parameter settings

• Step 3. Knowledge based plan quality QA
 ➢ known plan quality parameters

Li et al, Med Phys 40, 111711, 2013

Step 1. Deform the Original Dose for New Anatomy

Dose Atlas Guiding Optimization
• Features of all cases covered by only 5 atlas
• New anatomy matched to nearest atlas
• Deformable Registration used to apply atlas dose to new anatomy
• Goal dose guides optimization

Knowledge-Guided Plan Adaptation

- Step 1. Deformable registration of Daily and Planning CT images
 - Warping planned dose to changed anatomy
 - Known Goal dose

- Step 2. Auto-optimization
 - Known optimization parameter settings

- Step 3. Knowledge based plan quality QA
 - Known plan quality parameters

Step 2. Optimization Objective from Daily Imaging

Original Objectives vs Daily Objectives

Li et al, Med Phys 40, 111711, 2013

Step 2. Re-optimization

CT Objectives vs Deformed-CT Objectives
Knowledge-Guided Plan Adaptation

- **Step 1.** Deformable registration of Daily and Planning CT images
 - Warping planned dose to changed anatomy
 - Known Goal dose

- **Step 2.** Auto-optimization
 - Known optimization parameter settings

- **Step 3.** Knowledge based plan quality QA
 - Known plan quality parameters

Step 3. Plan Quality QA

Planned vs. Modeled

Addressing Intra-fractional Change

- **Online Adaptation = 0 Margin?**
 - Inter-fractional motion can be managed with plan adaptation
 - Intra-fractional motion requires tracking or additional margin

- **SV motion as example**
 - Prostate tracking: simple with fiducial markers
 - SV tracking: difficult & requires margin
Inter-fractional SV Motion

Quantifying Intra-fractional Motion

Motion Definition

Sheng et al. JROBP June 2017
Margin: 5 mm for SV Alone

<table>
<thead>
<tr>
<th>Isotropic margin (mm)</th>
<th>95% post-tx SV coverage (% fractions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
</tr>
</tbody>
</table>

5mm: selected as minimal margin for sufficient coverage

Margin: Surrogate Underestimates

- Margin determined from surrogates
 - Using popular Van Herk’s recipe
 - Based on motion estimated from COM and Border

<table>
<thead>
<tr>
<th>Van Herk Margin</th>
<th>LR</th>
<th>AP</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center of Mass</td>
<td>0 mm</td>
<td>0.5 mm</td>
<td>0.8 mm</td>
</tr>
<tr>
<td>Border</td>
<td>1.2 mm</td>
<td>3.9 mm</td>
<td>2.5 mm</td>
</tr>
</tbody>
</table>

Predicting SV Coverage via IGRT

- SV Coverage Prediction via Regression
 - Based on fractional coverage data
 - Established in a way for simple clinical implementation during IGRT

Using COM

\[P_1(x) = 1.003 - 0.002x^{0.56} \]

Threshold: 4.5mm

Max COM Shift (mm)

Using border

\[P_2(x) = 1.003 - 0.002e^{0.56}x \]

Threshold: 7.0mm

Max Border Shift (mm)
From Challenges to Tools

- **When to Adapt**
 - Daily Evidence-Based Decision Making

- **How to Adapt**
 - Knowledge-Guided Re-Plan Margin based on Intra-fx Motion

- **How to Verify**
 - Quality Assurance

Dr. Dan Low’s Presentation

Daily Evidence-Based Decision Making

Knowledge-Guided Re-Plan Margin based on Intra-fx Motion

Quality Assurance

Thank you