

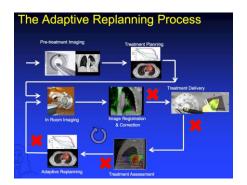
Disclosures

ViewRay Stock

• Varian MRA

Why ART QA is Needed

Initial plan: kidney far away and not getting much dose, so not included in optimization.



Re-optimized plan: still far away, but not weighted and optimizer happens to puts a beam through it.

Edited optimization Fixed the problem but added time and complexity.

James Lamb

Jan-Jakob Sonke

Patient-Specific QA

- Patient-specific QA paradigms need to be revisited for Adaptive RT
- Time, complexity, and changes in risk profiles demand updated approach
- No anecdotal or recorded data concerning errors
- · Proactive approach is needed

How to Approach?

- TG100 based concepts
- FMEA
- Identify potential failure modes
- Evaluate relative priority to manage failure mode (risk priority number) C
- RPN = O*D*S
- O: Probability of occurrence
- D: (non) Detection
- S: Severity

Detect	
<u>.</u>	
ailure Nodes	Effects
Î	
Cause	Saiful Huq

PINEA

Example ODS Table

Highly Nonlinear!

Rank	Occurrence	Detection	Severity
	Probability that the cause will occur and lead to the failure mode	Probability that the failure mode will be detected before resulting in the end effect	Seriousness of the end effect when it occurs
1	Remote probability	Always	No effect
2	Low probability	High likelihood	Minor effect
3			
4	Moderate probability	Moderate likelihood	Moderate effect
5			
6			
7	High probability	Low likelihood	Serious effect
8			
9	Very high probability	Very low likelihood	Injury
10	100% probable	Never	Death

FMEA ranking scales for Occurrence, Detection and Severity.

Death = 5X Minor Effect!


Adaptive FMEA

- FMEA for ART conduced by Noel et al
- Evaluated "critical steps" in conventional IMRT and ART
- 21 critical steps unique to standard Noter et al. IMRT
- 30 critical steps common to both
- 13 new critical steps

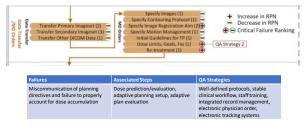
Relative FMEA

- Followed up by Cai et al to compare conventional IMRT and Adaptive
- Divided into 5 workflow categories Simulation
- Data Transfer and MD Orders
- Data Transfer and WD Orders
 Treatment Planning
 Plan Approval and Preparation
- Treatment

Cai et al, Med Phys in press

3

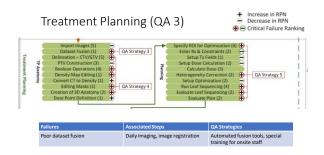
Why Different?

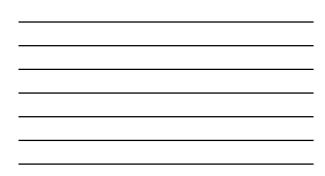

- Timescales
 - Off-line allows 1 day for entire workflow · On-line allows minutes for entire workflow
- Workflow more complex
 - Similar to retreatment
 - Requires assessment of prior dose
 Registration and re-segmentation
 - · Requires optimization with updated contours
 - Rapid evaluation of plan quality

Simulation

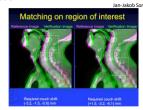
Patient Set Up (2) Patient Prepped (1)		ART
Tx Volume Scanned (5) + Image/isocenter Transfer (1) Record Isocenter/Points (1) + Mark Isocenter/Points (2) Misc. Setup Data Documented (3)-	QA Strategy 1 ⊕⊖ Critica	ase in RPN ase in RPN al Failure Ranking
I		
Number	of failure modes	QA Strategies

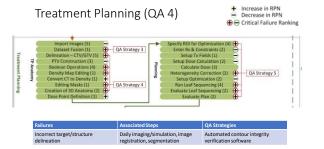
Data Transfer and MD Orders

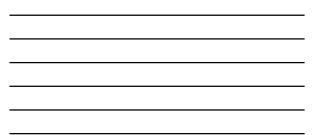



Checklists and Standardization

UCLA Checklists and Communications




Fusion QA


- Same processes as traditional fusion
- Manual evaluation

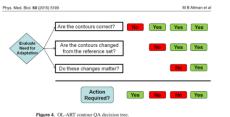
Contouring

1) Manual and auto-contouring with and without deformation

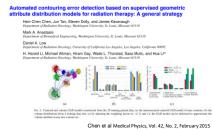
- Number of structures need to minimize
- Contouring errors Focus on errors that have dosimetric impact • The goal is to quickly (minutes) create needed structures which are
- sufficiently accurate to create adaptive plan

2) Manual contour QA

3) Automatic contour QA


- Not the same as automatic contouring
- Generally a separate algorithm/software
- Developing paradigm and tools

Altman et al (PMB 2015, 5199)

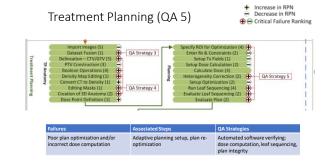

- Developed automated contour QA technique
- Relied on knowledge-based approach
- · Technique able to detect most errors
- Adaptive is subtly different
 - Same patient, different day
 Patient is its own knowledge base
- Metrics: Size/shape Positional
 - Image/pixel properties
 Binary type metrics (e.g. presence)
- HH-

Contour QA

Altman et al PMB 60, 5199 (2015)

Chen et al, Geometric Attribute Distribution Model

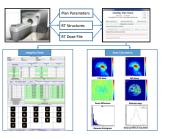
GAD Model


- Characterize intra-structural centroid and volume variations
- Intra-structural shape variations
- Iterative weighted GAD model-fitting to detect contouring errors
- Trained and demonstrated on head and neck patients
- Sensitivity and specificity >0.9 for centroid and volume related contouring errors
- Sensitivity and specificity of 0.82 and 0.94, respectively, for shape errors

Our QA Process

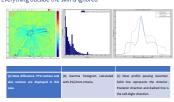
• Manual during initial processes (physicist and physician)

After plan completed, QA report contains quantitative comparisons between


Plan verification

Traditional workflow
 measurement based
 Adaptive workflow

calculation based


Wash U Process, Courtesy Sasa Mutic

Wash U Software, Courtesy Sasa Mutic

Dose Distribution Comparison

3D gamma calculation over the full volume with 3%, 3 mm criteria
 Everything outside the skin is ignored

UCLA Process

- Also use Monte Carlo
- Developed our "wrapper"

6 number of Histories (10%)	Re-Calculate Adaptive Dose	-	-	-	-
3 *	30 -	-		-	
Distance Tolerance [mm]	Dose Threshold [%]		1	1	100
3 n Dose	Calculate	-			Gauss
Tolerance [%]	Gamna		General Passing Rate + 65.83 [%]	0.0	Carera
Genera	ute report		14	Devely 0	
				8	
		1		-1	
				1	Sa I IS Centra

Plan Approval and Preparation

Plan Approval	Plan Approval (3) CA Strate Plan Preparation (fmaps Data) (1) Define Imaging for Localization (1) Define Anatomy for Localization (1) Download Plan (3) Manual Plan Modification (1)	 Increase in RPN ⇒ Decrease in RPN ⊕ ⊖ Critical Failure Ranking
Failures	Associated Steps	QA Strategies
Poor plan review	Dose prediction/evaluation, adaptive plan evaluation	Automated comparisons between planning goals and achieved goals,

Automated Plan Quality Checks

• Yang et al, (Wash U) Plan integrity verification

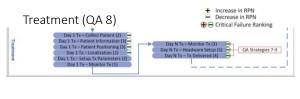
• Zhu et al, (Duke), Prostate adaptive plan quality tool, predicts dose quality and compares against plan

Plan Quality Evaluation

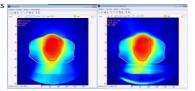
Failures	Associated Steps	QA Strategies
Incorrect interpretation of plan data for treatment delivery	Adaptive plan setup and delivery	Independent verification software comparing data indicated by the planning system to data read by the delivery system

Early Approach

- Peng et al (PMB 201 3659) developed 4 step approach for prostate
 ART
 - Offline phantom measurement of original plan
 Online independent MU calc
 Online plan-data transfer verification

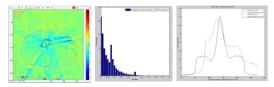

 - Offline validation of delivered parameters (post-treatment)

Wash U



Failures	Associated Steps	QA Strategies
Failures in treatment parameter setup on treatment machine	Adaptive plan setup and delivery	Simulated delivery, pretreatment, retrospective MLC QA

Independent Dose Calculations


- Wash U Software
- Rapid Monte Carlo calculation

Relatively poor statistics

Dose Calculation Comparisons

• 3D Gamma comparison, histograms, profiles, etc.

Failures	Associated Steps	QA Strategies
Failures during treatment delivery	Adaptive plan setup and delivery	Transmission detectors, real-time MLC/Gantry monitoring, post delivery machine record QA

Conclusions

- Substantial differences between conventional and adaptive patientspecific QA
- Calculation-based dose distribution and treatment delivery QA replaces measurement base
- Need for quantitative and rapid QA will rely on automation
 Meanwhile, more manual techniques are employed
- Excellent example of use of FMEA