

Making Cancer History[®]

Reference and relative dosimetry in magnetic fields

Gabriel O. Sawakuchi Assistant Professor Department of Radiation Physics Division of Radiation Oncology

gsawakuchi@mdanderson.org www.mdanderson.org/sawakuchilab

Dr. O'Brien, Elekta (former postdoc)

Disclosure

This project was partially funded by Elekta

Learning objectives

- 1. Understand how the radiation field is affected by the presence of strong magnetic fields
- 2. Understand how the response of detectors is affected by the presence of strong magnetic fields
- 3. Understand differences in **relative dosimetry** in the presence of strong magnetic fields
- 4. Understand differences in **reference dosimetry** in the presence of strong magnetic fields

MR-guided radiation therapy (MRgRT)

- New treatment modality that combines MR-imaging with radiotherapy linacs or Co-60 sources
- Introduces magnetic fields to the radiotherapy environment
- Current range from 0.35 T to 1.5 T
- Magnetic fields change the characteristics of the radiation field and affects the response of detectors

Dosimetry challenges

- Beam data collection is required for the accurate and safe commissioning of the treatment planning system
 - Response of detectors is affected
- Machine calibration using reference dosimetry protocols
 - Geometrical restrictions
 - Adapted protocols

Lorentz Force

No Magnetic Field

1.5 T Magnetic Field

Red: electrons Blue: positrons

Electrons continue to scatter.

However, their trajectory in water/tissue is heavily influenced by the Lorentz force.

Note: Positrons are deflected in the opposite direction

Electron Return Effect

No Magnetic Field

1.5 T Magnetic Field

Courtesy of Dr. O'Brien, Elekta Inc.

Gabinel Sawakuchi, IVIDACC

 (\times)

Red: electrons Blue: positrons

Electrons return to high density medium

Must to be modelled in the treatment planning system

Depth dose

- Magnetic field alters the depth dose distribution
- Shifts *d*_{max} to shallower depths
- Changes the value of the %dd(10)_x beam quality specifier
- TPR_{20,10} effectively independent of magnetic field strength

Pure Photon Beam	d _{max}	%dd(10) _x	<i>TPR</i> _{20,10}
No magnetic field	1.85	71.4	0.697
1.5 T magnetic field	1.30	69.7	0.695

Lateral profiles

- Magnetic field alters the lateral profiles
- Penumbra becomes asymmetric
- Penumbra becomes broader on one side
- Central axis is shifted

Gabriel Sawakuchi, MIDACC

Appropriate detectors to measure dose distributions

Effective point of measurement (EPOM)

12

Ionization Chamber Response

Relative dosimetry

Output factors center versus peak of profile

Adaptation strategies

Code of Practices

Home > News + Events > News

New facility supports development of MRI-guided radiotherapy

A new electromagnet at the National Physical Laboratory's (NPL) Theratron radiation facility will enable research supporting MRI-guided radiotherapy - a state-of-the-art cancer treatment.

Radiotherapy treats cancer by focusing beams of ionising radiation on a tumour, killing cancerous cells by damaging their DNA. Addiation delivery must be tightly controlled to minimise damage to the surrounding healthy tissue. Typically, X-ray based techniques are used to image a patient immediately before treatment to direct the radiation. But tumours move and deform inside a patient's body with bodily functions such as breathing, and can shift and change in size over the course of treatment.

MRI-guided radiotherapy provides real-time images during a patient's treatment, and offers more detailed and higher contrast images for the identification of tumours and soft tissues. This boosts tumour targeting accuracy, reducing side-effects and increasing survival rates.

Currently untreatable cancers, such as kidney and pancreatic tumours, which can't be accurately tracked during treatment, may become treatable.

FIRST WATER CALORIMETER MEASUREMENTS IN AN MRI-LINAC

A leap towards traceable dosimetry for MR-guided radiotherapy

A team of researchers from VSL Dutch Metrology Institute and the University Medical Centre Utrecht have, for the first time ever, carried out calorimetric absorbed dose to water measurements in a 1.5 T magnetic field of an Elekta Atlantic MRI-linac. The measurements that

Adaptation strategies

Dose to Water

- NPL using Alanine
- Calorimetry
 - Water calorimetry (VSL)
 - Miniature graphite calorimetry (Sunnybrook)

L de Prez et al. (2016). PMB 61, 5051

Courtesy of Dr. Sarfehnia

Formalisms

Current dosimetry formalisms do not account for the effect of the magnet field on the ionization chamber response:

Original Formalism	$D_w^Q = M \cdot N_{D,w}^{^{60}Co} \cdot k_Q$	AAPM, IAEA,
Adapted	$D_w^Q = M \cdot N_{D,w}^{^{60}Co} \cdot k_Q \cdot k_B^Q$	(O'Brien et al. 2016) (Malkov & Rogers 2018) (Spindeldreier et al. 2017)
rumalisilis	$D_w^Q = M \cdot N_{D,w}^{{}^{60}Co} \cdot k_Q \cdot c_B \cdot k_B^Q$	(van Asselen et al. 2018)

 k_B^Q (or k_B) is difficult to measure. Monte Carlo difficult to validate empirically.

Ionization Chamber Orientation

Ionization Chamber Orientation

Ionization Chamber Orientation

k_B versus Beam Quality

 $||_{ch}$: magnetic field parallel to chamber $||_{ph}$: magnetic field parallel to photon beam

*TPR*_{20,10} is independent of the magnetic field

									Malkov & Ro	ogers 2018. MI $k_B(t)$	P 45, 908 .5 T)
Δ	danta	tion	etrate	adina	· ra	for	anc	a da	$ hamber [V(cm^3)] $	$\ _{ch}$	$\ _{ph}$
	apla		Shale	gies							
									A12 (0.65)	0.9983	0.9940
									A19 (0.62)	1.0007	0.9964
				O'Brien et al	2016 MP 43	3 4015		II	T2 (0.54)	1.0004	0.9932
Dub	lichad \	/alua	cofk	D i i	2010. WI 40	, 0 nsr	$O_{\rm msr}$	Uncertainty	A12S (0.25)	0.9984	0.9962
F UD	iisiieu v	alue	S UI N _R	Detector	$k \widetilde{B}_{\parallel}$	$k_{B_{\sim}}^{2 \text{ mar}}$	$k_{B_{\uparrow\uparrow}}^{\approx \text{msr}}$	(%)	A18 (0.125)	0.9981	0.9971
				PTW 30013	0.004	0.961	0.076	0.15	A1(0.057)	0.9962	0.9983
NE2571	Without magnetic field	l With magn	etic field	PTW 30013	0.994	0.951	0.970	0.15	A1SL (0.057)	0.9966	0.9983
	Average Maximum	Average	Maximum	PTW 20011	1.000	0.958	0.970	0.25	A14* (0.016)	0.9718	0.9827
Characteristic	value deviation	value o	deviation	PTW 30011 ²	1.000	0.938	0.968	0.25	T14*(0.016)	0.9696	0.9837
	value deviation	value		PTW 30010"	0.996	0.961	0.975	0.25	A14SL* (0.016)	0.9725	0.9823
Linearity	100.1% 0.4%	100.1% (0.2%	NE2571"	1.003	0.962	0.973	0.20	A16* (0.016)	0.9600	0.9830
Repeatability	0.1% <0.1%	0.1% <0	0.1%	NE2571	1.001	0.962	0.973	0.15	20010 ^W (0.6)	0.0872	0.0022
$P_{\rm ion}$		1.001 <0	0.001	Exradin A19	1.005	0.962	0.956	0.25	30010 (0.0) 30011 ^w (0.6)	0.9872	1.0000
$P_{\rm pol}$	1.000 <0.001	1.000 <0	0.001						30012 ^w (0.6)	0.9920	0.9938
$\dot{P}_{1.5\mathrm{T}}$ (perpendic	ular)	0.953 (0.002	"Chambers model	led with a 1 mm	h thick layer of P	MMA representi	ng a water-proof	30013 (0.6)	0.9881	0.9937
Smit et al. 2013	3. PMB 58. 5945			sleeve.					31006 (0.015)	0.9867	0.9953
		Chamber type	Reference		Т	PR _{20,10}	$k_{B_{\perp},Q}$	$k_{B_{\parallel},Q}$	31010 (0.125)	0.9933	0.9905
						,			31016 (0.016)	0.9963	0.9992
		PTW 30013	UMC Utrecht	М	0	.701	0.963(2)	0.992(2)	31014 (0.015)	0.9951	0.9992
			de Prez et al (2016b)	М	0	.702	0.961(7)				
Reynolds et al.	2017 MP 44, 4322		O'Brien <i>et al</i> (2016)	MC	0	.695	0.976(1)	0.994(1)	FC65-G (0.65)	0.9917	0.9914
	DDaao						$0.961(1)^{a}$		FC65-P (0.65)	0.9917	0.9901
$K_B^{\circ}(1.51)$	PR06C		Malkov et al (2017a)	MC		695		0.988(1)	FC23-C (0.23)	0.9980	0.9972
Dorpondicular	Darallal		Spindeldreier et al (2	017) MC		674	0.054(2)	0.002(2)	CC25 (0.25)	0.9987	0.9968
Perpendicular	Parallel		Spindelaretet et at (2	017) WC	. 0	.074	0.954(5)	0.995(5)	CC08 (0.08)	0.9990	0.9909
0.953 + 0.008	0.996 + 0.008						0.959(3)*		- CC04 (0.04)	0.9971	0.9998
0.000 - 0.000		IBA FC65-G	UMC Utrecht	М	0	.701	0.952(2)	0.997(3)	CC01 (0.01)	0.9805	0.9889
			de Prez <i>et al</i> (2016b)	М	0	.702	0.951(7)				
			Malkov <i>et al</i> $(2017a)$	MC	c 0	.695		0.992(1)	NE2581 ^w (0.6)	0.9993	1.0011
									NE2571 ^w (0.6)	0.9888	0.9922
		^a Result obtained	with chamber in the perpend	dicular orientation as	shown in figure	e 2, but with the	magnetic field in	the opposite	NE2561 ^w (0.325)	0.9963	0.9875
Aug 2, 2018 - AAPM - SAM direction.			van Asselen et al	. 2018. PŇB	63, 125008	0		PR06C/G ^w (0.65)	0.9986	0.9973	

Aug 2, 2018 - AAPM - SAM

Final remarks

- Radiation field is affected by the presence of a strong magnetic field
 - Depth dose distribution
 - Lateral profile
 - Ionization density
- Detector response is affected by the presence of a strong magnetic field
 - Air gap
 - Shielding effects
 - Detector orientation
- New strategies must be adopted to perform relative dosimetry
- Adapted formalisms and new detectors are required to calibrated MRgRT units that employ strong magnetic fields

Thank you! Questions? gsawakuchi@mdanderson.org

Sawakuchi Lab

Sharmistha Chakraborty, Research Scientist Scott Bright, Postdoc Racheal Martin, Physics Resident Conor McFadden, Sr Research Engineer David Flint, PhD student David Yoon, RAII Hatim Amiji, Undergrad student, Rice University Zac Metzler, AAPM summer student Sruthi Sivabhaskar, MD Anderson summer student

Daniel J. O'Brien, Postdoc, former member

MD Anderson

David Grosshans Radhe Mohan Narayan Sahoo Cullen Taniguchi Pablo Yepes Uwe Titt Dragan Mirkovic

External Collaborators

Asaithamby Aroumougame, UTSW Steffen Greilich, DKFZ Teruaki Konishi, NIRS Satoshi Kodaira, NIRS Yoshiya Furusawa, NIRS Mark Akselrod, Landauer Inc Joseph Duman, BCM Pavel Sumazin, BCM

Funding Elekta, CPRIT, UTSW and NCI