Intensity Modulated Brachytherapy Using Directional Sources

Ryan Flynn, Ph.D.
Medical Physics Division Director
Department of Radiation Oncology
University of Iowa
• Founder of pxAlpha, LLC, which is developing rotating shield brachytherapy technology
Possibilities for intensity-modulated brachytherapy: technical limitations on the use of non-isotropic sources

M A Ebert

Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009, Australia
and
Department of Physics, University of Western Australia, WA 6009, Australia

E-mail: Martin.Ebert@health.wa.gov.au

Received 4 April 2002, in final form 20 May 2002
Published 4 July 2002
Online at stacks.iop.org/PMB/47/2495
Partially-Shielded Sources

- 192Ir dose distributions
- Ignore scatter
- 45° emission at various shield transmission levels

Effects of transmission on dose distribution:

Emission: $45^\circ \times 1$ $11.25^\circ \times 4$

IMBT Improves Tumor Dose Conformity Relative to HDR

Cervical Cancer

• 13,240 women estimated to be diagnosed with cervical cancer in the U.S. alone in 2018 (Siegel et al, 2018)

• For stage IB and higher tumors, standard treatment is Chemo + External Beam RT + Brachytherapy

• Brachytherapy boost is critical for tumor control

• Tumors are often irregularly-shaped, laterally-extended, and BT applicator not centered
How can IMBT Benefit Cervical Cancer Patients?

(including EBRT)
Intracavitary/Interstitial Approach to Improve Dose Distributions

The Intracavitary/Interstitial Approach Works

- RetroEMBRACE: Retrospective study completed prior to EMBRACE I (2008)
- Local control at 3 years for HR-CTVs ≥30 cm³
 - 92% at centers with IC/IS (n=169)
 - 82% at centers with IC only (n=118)
- Local control at 5 years:
 - 87% at centers with IC/IS (n=124)
 - 80% at centers with IC only (n=163)
- EMBRACE II: Launched in 2016
 - ≥20% of patients at a participating center must receive IC/IS

L. Fokdal et al, Radiother Oncol 120, 434-440 (2016)
Pötter et al, "The EMBRACE II study...” Clin Transl Radiat Oncol 9, 48-60 (2018)
Logistical Benefits of an Intracavitary Only Approach

• 25% decline in average number of residency-based IS brachytherapy procedures reported between 2006-2007 and 2010-2011 (Compton et al)

• 50% of Canadian centers with the capability to treat gynecological cancer patients with HDR-BT also have IC/IS capability (Gaudet et al)
 • Even so, <10% of residents and fellows reported being satisfied with the IC/IS training they received (Gaudet et al)
 • Opposite case for IC-only training: 70% satisfied (Gaudet et al)

• Numbers in US not available but unlikely more in favor of IC/IS than for Canada since U.S. centers tend to be less consolidated and more widely dispersed

Patent pending
RSBT Provides Excellent HR-CTV Dose Conformity

<table>
<thead>
<tr>
<th>Patient</th>
<th>ICBT</th>
<th>IS+ICBT</th>
<th>RSBT-180</th>
<th>RSBT-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.55 min</td>
<td>4.66 min</td>
<td>8.23 min</td>
<td>34.91 min</td>
</tr>
<tr>
<td>2</td>
<td>7.04 min</td>
<td>7.32 min</td>
<td>11.01 min</td>
<td>76.45 min</td>
</tr>
<tr>
<td>3</td>
<td>5.31 min</td>
<td>5.37 min</td>
<td>9.31 min</td>
<td>53.57 min</td>
</tr>
</tbody>
</table>

“Best” plan

EQD2 Dose, Unit: Gy

Yang et al, PMB 58, 3931-41 (2013)
RSBT Provides Excellent HR-CTV Dose Conformity

Yang et al, PMB 58, 3931-41 (2013)
Direction-Modulated Brachytherapy for High-Dose-Rate Treatment of Cervical Cancer. I: Theoretical Design

Dae Yup Han, MSc,* † Matthew J. Webster, MSc,* †† Daniel J. Scanderbeg, PhD,*
Catheryn Yashar, MD,* Dongju Choi, PhD,* Bongyong Song, PhD,*
Slobodan Devic, PhD,§ ‖ Ananth Ravi, PhD,¶ and William Y. Song, PhD* ‡

Departments of *Radiation Medicine and Applied Sciences, †Electrical and Computer Engineering, and ‡Physics, University of California San Diego, La Jolla, California; §Medical Physics Unit, McGill University, Montréal, Québec, Canada; ‖Department of Radiation Oncology, Jewish General Hospital, Montréal, Québec, Canada; and ¶Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada

Received Oct 1, 2013, and in revised form Feb 11, 2014. Accepted for publication Feb 26, 2014.
192Ir based Direction-Modulated Brachytherapy

\[{}^{192}\text{Ir} \text{ DMBT for Cervical Cancer} \]

Potential Benefits of IMBT for Prostate Cancer

- 160,000 new diagnoses expected in 2018
- 5-year relative survival rates for localized prostate cancer are >99%
- 30,000 deaths expected in 2018, 2nd highest for cancer death in men
- Treatments that improve convenience for the patient and maintain low toxicity without compromising effectiveness are attractive:
 - SBRT
 - Low-dose-rate brachytherapy
 - One-shot prostate cancer HDR

<table>
<thead>
<tr>
<th>Series (Last update)</th>
<th>Dose</th>
<th># Patients</th>
<th>Disease Risk</th>
<th>Median Follow-up</th>
<th>Biochemical Control @ Median F/U</th>
<th>Grade ≥ 3 Toxicity (%)</th>
<th>Grade ≥ 3 Toxicity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Vernon Hospital, UK (2017)</td>
<td>19 Gy x 1</td>
<td>23</td>
<td>Int, High</td>
<td>4.1</td>
<td>94%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20 Gy x 1</td>
<td>26</td>
<td>Int, High</td>
<td>4.1</td>
<td>94%</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Santander, Spain (2016)</td>
<td>19 Gy x 1</td>
<td>60</td>
<td>Low, Int</td>
<td>6.0 y</td>
<td>66%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Toronto Sunnybrook (2017)</td>
<td>19 Gy x 1</td>
<td>87</td>
<td>Low, Int</td>
<td>2.25 y</td>
<td>92%</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>Oakland U., Michigan (2017)</td>
<td>19 Gy x 1</td>
<td>58</td>
<td>Low, Int</td>
<td>2.9 y</td>
<td>93%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Phoenix definition of biochemical failure: PSA reaches nadir + 2 ng/mL

“Group” nadir

19 Gy x 1: 87 pts

13.5 Gy x 2: 83 pts

Morton et al, Radiother Oncol 122, 87-92 (2017)
Technology

Conventional High-dose-rate Brachytherapy

Rotating Shield Brachytherapy (RSBT)

Needle and Catheter Design and Prototypes

Needle/Catheter/Source Model

Prototypes

Catheter

Needle
Dose Escalation Achievable with RSBT

Conventional HDR

One 192Ir source
19 Gy in ~20 minutes

Proposed RSBT

Nineteen 153Gd sources
23 Gy in ~133 minutes
Same Urethral Dose
Dose Escalation of 23% Possible with RSBT
Multisource RSBT Apparatus: Angular Drive Mechanism

a. Angular drive mechanism, 0°

Prostate gland

Rectum

Translational motion

Prototype Construction

Images from Bounnak Thammavong
Prostate IMBT System Design from McGill (Enger) Group

Famulari et al (2018)
Conclusions

- IMBT has the potential to significantly improve dose distributions relative to conventional HDR.
- For cervical cancer, IMBT could eliminate the need for combined intracavitary and interstitial brachytherapy.
- For prostate cancer, IMBT could provide superior one-shot temporary brachytherapy to 192Ir-based HDR.
- An isotope other than 192Ir is needed for prostate IMBT.
Acknowledgements

Faculty

- Xiaodong Wu, Ph.D.
- Yusung Kim, Ph.D.
- Weiyu Xu, Ph.D.
- John Buatti, M.D.

Graduate students

- Hossein Dadkhah (BME)
- Michael Cho (ECE)
- Karolyn Hopfensperger (BME)
- Jirong Yi (ECE)

- Blake Dirksen, M.S.
- Bounnak Thammavong, M.A.

Larry DeWerd (UW-Madison)
Wes Culberson (UW-Madison)

Eckert & Ziegler

- Lissa Tegelman, Ph.D.
- Inna Taskaeva, Ph.D.

NIH National Institute of Biomedical Imaging and Bioengineering
R01 EB020665

NIH National Cancer Institute
R41 CA210737 (STTR Phase I)
Questions?

Young Corn,
by (Iowan) Grant Wood (1931)