Incorporating clinical and biological factors into (NTCP) models

Ane Appelt

YCR University Academic Fellow, University of Leeds, UK
Medical Physicist, St James’s University Hospital, Leeds
Adjunct Associate Professor, SDU, Denmark

@cancerphysicist

AAPM 2018, Nashville, US
Standard phenomenological modelling methodology

\[
\text{EUD} \quad V_x \\
D_{\text{mean}}
\]
Standard phenomenological modelling methodology

Reduce dose distribution to DVH
- Removes all spatial information
- Assumes equal sensitivity/response of all parts of OAR
- Alternatives:
 - Explicitly model local response on voxel-to-voxel basis
 - Divide into anatomical substructures
 - Dose surface histograms
Standard phenomenological modelling methodology

Reduce DVH to limited number of dose metrics

$$EUD = \left(\sum_{k} d_k^a \frac{v_k}{V_{tot}} \right)^{1/a}$$

Mean dose: $$a = 1$$

$$V_x = \sum_{k} E(d_k) v_k$$

$$E(d_k) = \begin{cases} 0 & \text{for } d_k < x \text{ Gy} \\ 1 & \text{for } d_k \geq x \text{ Gy} \end{cases}$$
Standard phenomenological modelling methodology

Generalized approach for calculating “equivalent organ dose/volume” from local response

Standard phenomenological modelling methodology

Reduce DVH to limited number of dose metrics

Dose metrics generally highly correlated

Potential solutions:
- Bootstrapping methodologies
- Principal component analysis (PCA)
Standard phenomenological modelling methodology

Link funktion:
- Logistic (binary outcome)
- Probit (binary outcome)
- Linear model (continuous outcome)
 - Note underlying model assumptions (data not bounded)
- Ordinal logistic (graded outcome)
Standard phenomenological modelling methodology

Logistic regression

\[
\frac{p}{1-p} = \ln(X), \quad X = b_0 + b_1 D
\]

\[
p(X) = \frac{1}{1 + \exp(-X)}
\]
Standard phenomenological modelling methodology

\[D_{50} = D\bigg|_{p=0.5}, \quad \gamma_{50} = \frac{\partial p}{\partial D} D\bigg|_{p=0.5} \]
Standard phenomenological modelling methodology

Including graded outcome – ordinal logistic regression

\[
\frac{p_{zi}}{1 - p_{zi}} = \ln(X), \quad X = b_{0,i} + \bar{b} \bar{Y}
\]

\[
p_{zi}(X) = \frac{1}{1 + \exp(-X)}
\]
Standard phenomenological modelling methodology

To fit / optimize model: Optimize entire process at once
Lyman-Kutcher-Burman (LKB) model

Effective volume

\[V_{eff} = \sum_i \left(\frac{D_i}{D_{eff}} \right)^{\frac{1}{n}} \]

Probit link function

\[NTCP(D_{eff}, V_{eff}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{u^2}{2} \right) du \]

\[t = \frac{D_{eff} - D_{50}(V_{eff})}{mD_{50}(V_{eff})} \quad D_{50}(V_{eff}) = D_{50}(1) V_{eff}^{-n} \]
Modelling including clinical factors

EUD_x D_{mean}
Modelling including clinical factors

Assume same dose representation for different risk groups

Treat dose metric and clinical factors as standard regression parameters

Generalised linear model (GLM) framework

\[g(p) = X = b_0 + b_1 D + b_i Y_i \]

- First order inclusion: Additive
- Second order: Multiplicative (interaction term)
 - "Dose modification factor
Modelling including clinical factors

Assume same dose representation for different risk groups

Treat dose metric and clinical factors as standard regression parameters

Logistic regression – direct relationship with odds ratios (OR)

\[X = b_0 + b_1 D + b_i Y_i \]

\[p(X) = \frac{1}{1 + \exp(-X)} \]

\[OR_i = e^{b_i Y_i} \]
Assume same dose representation for different risk groups

Treat dose metric and clinical factors as standard regression parameters

Logistic regression – direct relationship with odds ratios (OR)

\[X = b_0 + b_1 D + b_i Y_i \]

\[p(X) = \frac{1}{1 + \exp(-X)} \]

\[OR_i = e^{b_i Y_i} \]

\[D_{50}^{OR} = D_{50} \left(1 - \frac{1}{4} \ln(OR) \right) \]

\[\gamma_{50}^{OR} = \gamma_{50} - 0.25 \ln(OR) \]

Ane Appelt
@cancerphysicist

AAPM 2018

Appelt & Vogelius, Radiother Oncol, 2012
Example: Acute urinary toxicity for rectal cancer radiotherapy

- 345 rectal cancer patients treated with 50-66 Gy / 1.8-2 Gy per fraction, both IMRT and 3D-CRT
- Relationship between acute cystitis (CTCAE v 3.0) and dose to the bladder
- Best predictor: $V_{35\text{Gy}}$ to the bladder (relative volume)

OR_{\text{male}} = 1.82 (1.17–2.80), OR_{\text{brachy}} = 1.36 (1.02–1.80) each 5 Gy
Example: Rectal cancer tumour regression after CRT

- 222 rectal cancer patients treated with 50-66 Gy / 1.8-2 Gy per fraction
- Relationship between EQD2 and tumour regression grade on pathological specimen

Blue, solid: TRG1 (complete response)
Green, dashed: TRG1-2 (major response)

N-stage: OR=2.06 for N0 vs N1-2, p=0.039
Size: OR=0.65 for each 50 mL increase in size, p=0.040

Tumour size and N-stage – TRG 1&2 response

Appelt et al, IJROBP, 2013
Example: Smoking and risk of radiation pneumonitis

\[\text{NTCP}(D, V) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t'} e^{-u^2/2} du \]

\[t = \frac{D - TD_{50}/V^n}{m \cdot TD_{50}/V^n} \]

Introduce dose modifying factor (DMF):

\[t = \frac{D_{\text{eff}} - TD_{50} \cdot \exp(\delta_1 \cdot Y_1) \cdot \ldots \cdot \exp(\delta_k \cdot Y_k)}{m \cdot TD_{50} \cdot \exp(\delta_1 \cdot Y_1) \cdot \ldots \cdot \exp(\delta_k \cdot Y_k)} \]

\[\text{DMF} = \exp(\delta_i \cdot Y_i) \]

Corresponds to a multiplicative (interaction, second order) effect
Example: SNPs and risk of radiation pneumonitis

\[
\text{NTCP}(D, V) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\tau} e^{-u^2/2} du
\]

\[
t = \frac{D - TD_{50}/V^n}{m \cdot TD_{50}/V^n}
\]

Introduce dose modifying factor (DMF):

\[
t = \frac{D_{\text{eff}} - TD_{50} \cdot \exp(\delta_1 \cdot Y_1) \cdot ... \cdot \exp(\delta_k \cdot Y_k)}{m \cdot TD_{50} \cdot \exp(\delta_1 \cdot Y_1) \cdot ... \cdot \exp(\delta_k \cdot Y_k)}
\]

\[
\text{DMF} = \exp(\delta_i \cdot Y_i)
\]

Corresponds to a multiplicative (interaction, second order) effect
Example: Surgery and risk of incontinence after prostate RT

Peeters et al (IJROBP, 2006)
Modelling including clinical factors

EUD

D_{mean}

V_x
Modelling including clinical factors

Assume completely different dose dependence for different risk groups
- Fit separate models for each group
- Or specify a parametric dependence on clinical factors
Modelling including clinical factors

Advantage:
May help to understand underlying differences in pathophysiology

Limitations
• Potential lack of power
• Depends on discrete clinical groups (no continuous factors)

Good robustness check of models
Example: Hematological toxicity during pelvic IMRT

Pelvic bone marrow dose related to acute toxicity using LKB model

A

Mitomycin + 5FU

B

Cisplatin
Example: Radiation induced liver disease

Cheng et al. *Inclusion of biological factors in parallel-architecture normal-tissue complication probability model for radiation-induced liver disease.* *IJROBP*, 2005

<table>
<thead>
<tr>
<th>Best estimate of parameter (95% confidence interval)</th>
<th>v_{50}</th>
<th>α</th>
<th>D_{50}</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole group (151 patients)</td>
<td>0.54 (0.51–0.58)</td>
<td>0.14 (0.11–0.16)</td>
<td>50 Gy (24–110)</td>
<td>0.18 (0.11–0.27)</td>
</tr>
<tr>
<td>HBV carriers (76 patients)</td>
<td>0.53 (0.51–0.55)</td>
<td>0.073 (0.05–0.15)</td>
<td>50 Gy (0–100)</td>
<td>4.56×10^{-7} (<0.06)</td>
</tr>
<tr>
<td>Non-HBV carriers (75 patients)</td>
<td>0.59 (0.52–0.63)</td>
<td>0.12 (0.08–0.13)</td>
<td>25 Gy (21–29)</td>
<td>59.8 (1–100)</td>
</tr>
</tbody>
</table>
Modelling including clinical factors

\[EUD = \sum_{x} V_{x} D_{\text{mean}} \]
Modelling including clinical factors

p(D_{x1})
p(D_{x2})
p(D_{x3})
p(D_{x3})

Local dose-response function
=> Determine spatial distribution of dose-dependence

Local
• Dose

Patient-level
• Response / outcome
• Clinical factors

Dose map without symptoms
Dose map with symptoms
Significance map with multivariate modelling

Ane Appelt
@cancerphysicist

AAPM 2018
Modelling including clinical factors

Local dose-response function
=> Determine spatial distribution of dose-dependence

Local
• Dose
• Response

Patient-level
• Clinical factors

 AAPM 2018
Modelling including clinical factors

Local dose-response function => Determine spatial distribution of dose-dependence

Local
- Dose
- Response
- “Clinical factor”

Patient-level
- Clinical factors

Functional imaging

Modelling including clinical factors

\[p(D_{x1}) \quad p(D_{x2}) \quad p(D_{x3}) \quad p(D_{x3}) \]

Local dose-response function
\[\Rightarrow \text{Determine spatial distribution of dose-dependence} \]

Significant challenges surrounding within- and between patient variation & multiple testing

- WE-AB-KDBRC-6: Variogram-Weighted Generalized Least Squares Regression to Predict Spatially Variant Tumor Voxel Response On Longitudinal FDG-PET/CT Imaging of FLARE-RT Protocol Patients
- Chen et al. Multiple comparisons permutation test for image based data mining in radiotherapy. Radiat Oncol 2013
How do we handle larger numbers of risk factors?

EUD

D_{mean}

V_x
Estimating the effect of multiple risk factors on dose-response relationships

Example: Radiation pneumonitis

Acta Oncologica, 2012; 51: 975–983

REVIEW ARTICLE

A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis

IVAN R. VOGElius1,2 & SØREN M. BENTZEN3

1Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Denmark,
2Department of Oncology, Væl Sygehus, Væle, Denmark, and 3Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA

Ane Appelt
@cancerphysicist

AAPM 2018
Estimating the effect of multiple risk factors on dose-response relationships

- Multivariate analysis of both dose and risk factors in full patient data sets
 - LARGE number of patients

- Alternative:
 Meta-analysis of already existing studies
 - Combine dose-response relationships with clinical risk factors as found in meta-analysis
Adjusting radiation dose–response relationships for clinical risk factors

Assume a fraction s of the patients had a risk factor with odds ratio OR.

$$NTCP_{\text{adjusted}}(D) = \frac{1}{1 + \exp\left(4y_0\left(1 - \frac{D}{D_0}\right)^\alpha\right)}$$

Adjusting radiation dose–response relationships for clinical risk factors

"Baseline" dose-response relationship, for patients without any of the risk factors

Assuming:
No correlation between risk factors

Estimate dose-response for patients without risk factor:

Adjusting radiation dose–response relationships for clinical risk factors

Assume a fraction \(s \) of the patients had a risk factor with odds ratio OR. Estimate dose-response for patients without risk factor:

\[
\begin{align*}
\gamma_{50} &= \frac{sP(1-P)}{s - (2P-1)^2} \left(\ln \left(\frac{P}{1-P} \right) + 4\gamma_{50} \right) \\
D_{50}^{a} &= 1 + \frac{1}{4\gamma_{50}} \ln \left(\frac{P}{1-P} \right) \\
P &= \frac{1}{2} \left(1 + s \frac{OR - 1}{OR + 1} \right)
\end{align*}
\]

"Baseline" dose-response relationship, for patients without any of the risk factors

Assuming:
No correlation between risk factors

Adjusting radiation dose–response relationships for clinical risk factors

Dose-response for patient with specific set of risk factors

\[D_{50}^{\text{risk}} = D_{50}^0 \left(1 - \frac{1}{4 \gamma_{50}^0 \ln OR_{\text{combined}}} \right) \]

\[\gamma_{50}^{\text{risk}} = \gamma_{50}^0 - \frac{1}{4 \ln OR_{\text{combined}}} \]

\[OR_{\text{combined}} = OR_{\text{risk factor 1}} \times OR_{\text{risk factor 2}} \times \ldots \]

Adjusting radiation dose–response relationships for clinical risk factors

• To use this method, we need
 • A dose-response relationship for an organ at risk
 • A set of risk factors + estimated ORs
 • The prevalence of the risk factors in the patient population that provided the dose-response relationship
Dose-response for radiation pneumonitis

\[D_{50} = 30.8 \text{ Gy (95\% CI: 28.7, 33.9)} \]
\[\gamma_{50} = 0.97 \text{ (95\% CI: 0.83, 1.12)} \]
<table>
<thead>
<tr>
<th>Clinical risk factor</th>
<th>Prevalence in QUANTEC studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-existing pulmonary co-morbidity</td>
<td>0.258</td>
</tr>
<tr>
<td>Mid or inferior tumour location</td>
<td>0.444</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0.283</td>
</tr>
<tr>
<td>Former smoker</td>
<td>0.663</td>
</tr>
<tr>
<td>Old age</td>
<td>0.5</td>
</tr>
<tr>
<td>Sequential chemotherapy</td>
<td>0.258</td>
</tr>
</tbody>
</table>
"Baseline" dose-response for radiation pneumonitis

- No pulmonary co-morbidities
- Tumour in the upper lobe
- No history of smoking or current smoking habit
- <63 years old
- Not treated with sequential chemotherapy

\[D_{50} = 34.4 \text{ Gy} (95\% \text{ CI: } 30.7, 38.9) \]
\[\gamma_{50} = 1.19 \text{ (95\% CI: } 1.00, 1.43) \]
Individualized dose-response for radiation pneumonitis (iQUANTEC)

Smoker, no risk factors

Patient with highest risk:
- Pulmonary co-morbidities
- Tumour in the middle/lower
- No history of smoking or current smoking habit
- >63 years old
- Sequential chemotherapy

Corresponding individualised dose constraints

Appelt et al. Acta Oncol 2014
Using the iQUANTEC model to design clinical proton therapy trials

- Estimate (distribution of) predicted benefit of new technology in representative patient cohort
- Design phase III trial using this estimate - rather than a single effect estimate for all patients
- Use phase III trial to test & validate the NTCP model
 - Misspecified model can be detected
- Feed phase III result into estimate of benefit for future individual patients

- Exemplar:
 Randomised phase III trial of proton vs photon treatment for locally advanced NSCLC
 - Simulate output of large number of trials
 - Reduction in sample size of at least 20%
 - Trial result will allow for estimate of individual patient benefit

Rydhög, Appelt, et al. Submitted for publication
Individualised NTCP to assess benefit from new technology

• “Development of an isotoxic decision support system integrating genetic markers of toxicity for the implantation of a rectum spacer” van Milk et al. Acta Oncol 2018

• Combine
 • QUANTEC model for late rectal toxicity
 • Genetic markers (SNPs) for radiosensitivity identified in meta analysis

• Use image deformation to simulate rectal spacer implantation, and assess individual benefit in treatment planning
Summary

- Clinical factors can be taken into account on several levels when conducting bioeffect (TCP/NTCP) modelling
- Most common approach: Inclusion alongside dose metrics
 - In this case, standard GLM regression framework can be used
 - Note challenges of estimating CIs / significance levels if also optimising dose metric representation
 - Additive factors (OR in logistic regression):
 - First order factors
 - Multiplicative factors (“dose modifying factors”):
 - Second order factors / interaction effects
- Increasing number of publications examining local dose effects, including clinical factors, but methodology is not standardized
- Consider meta analysis approaches
- Planning prospective studies
 - Consider integrating TCP/NTCP model to be prospectively validated