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Standard phenomenological modelling methodology

Reduce dose distribution to DVH
- Removes all spatial information
- Assumes equal sensitivity/response of all 

parts of OAR
- Alternatives:

- Explicitly model local response on 
voxel-to-voxel basis

- Divide into anatomical substructures
- Dose surface histograms 
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Standard phenomenological modelling methodology

EUD
VxDmean

Reduce DVH to limited 
number of dose metrics
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Standard phenomenological modelling methodology

EUD
Vx

Dmean

Generalized approach for calculating “equivalent 
organ dose/volume” from local response 

Seppenwoolde et al: Comparing different NTCP models that predict the 
incidence of radiation pneumonitis. IJROBP 2003, 55(3): 724-35
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Standard phenomenological modelling methodology

EUD
VxDmean

Reduce DVH to limited 
number of dose metrics

Dose metrics generally 
highly correlated

Potential solutions:
- Bootstrapping

methodologies
- Principal component 

analysis (PCA)
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Standard phenomenological modelling methodology

EUD
VxDmean

Link funktion:
- Logistic (binary outcome)
- Probit (binary outcome)
- Linear model (continuous outcome)

- Note underlying model assumptions 
(data not bounded)

- Ordinal logistic (graded outcome)
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Standard phenomenological modelling methodology
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Including graded outcome – ordinal 
logistic regression
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Standard phenomenological modelling methodology

EUD
VxDmean

To fit / optimize model: Optimize entire
process at once
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Lyman-Kutcher-Burman (LKB) model
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Modelling including clinical factors

EUD
VxDmean

Assume same dose representation for 
different risk groups

Treat dose metric and clinical factors as 
standard regression parameters

Generalised linear model (GLM) framework

• First order inclusion: Additive
• Second order: Multiplicative (interaction 

term)
• “Dose modification factor

! " = $ = %& + %() + %*+*
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Modelling including clinical factors

EUD
VxDmean

Assume same dose representation for 
different risk groups

Treat dose metric and clinical factors as 
standard regression parameters

Logistic regression – direct relationship with 
odds ratios (OR)

! = #$ + #&' + #()(

* ! = 1
1 + exp(−!)

23( = 45676
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Modelling including clinical factors

EUD
VxDmean

Assume same dose representation for 
different risk groups

Treat dose metric and clinical factors as 
standard regression parameters

Logistic regression – direct relationship with 
odds ratios (OR)

! = #$ + #&' + #()(

* ! = 1
1 + exp(−!)

23( = 45676
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Example: Acute urinary toxicity for rectal cancer radiotherapy

• 345 rectal cancer patients treated with 50-66 Gy / 1.8-2 Gy per fraction, both IMRT and 3D-CRT

• Relationship between acute cystitis (CTCAE v 3.0) and dose to the bladder

• Best predictor: V35Gy to the bladder (relative volume)

Grade 1+

Grade 2+

Grade 1+2:
Men, brachytherapy boost

Grade 1+2:
Women, no brachytherapy

Grade 2:
Men, brachytherapy boost

Grade 2:
Women, no brachytherapy

Appelt et al, Acta Oncol, 2015

ORmale =1.82 (1.17–2.80), Orbrachy = 1.36 (1.02–1.80) each 5 Gy 
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Example: Rectal cancer tumour regression after CRT

• 222 rectal cancer patients treated with 50-66 Gy / 1.8-2 Gy per fraction

• Relationship between EQD2 and tumour regression grade on pathological specimen

Appelt et al, IJROBP, 2013
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Tumour size and N-stage – TRG 1&2 response

N-stage: OR=2.06 for N0 vs N1-2, p=0.039
Size: OR=0.65 for each 50 mL increase in size, p=0.040

Blue, solid: TRG1 (complete response)

Green, dashed: TRG1-2 (major response)
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DMF =

Example: Smoking and risk of radiation pneumonitis

Tucker et al. Analysis of radiation pneumonitis risk using a 
generalized Lyman model. IJROBP, 2008

Introduce dose modifying factor (DMF):

Corresponds to a multiplicative (interaction, second order) 
effect
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Example: SNPs and risk of radiation pneumonitis

Tucker et al. Incorporating Single-nucleotide Polymorphisms
Into the Lyman Model to Improve Prediction of Radiation 
Pneumonitis. IJROBP, 2012

Introduce dose modifying factor (DMF):

Corresponds to a multiplicative (interaction, second order) 
effect
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Example: Surgery and risk of incontinence after prostate RT

Peeters et al (IJROBP, 2006)
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Modelling including clinical factors

EUD
VxDmean

Assume completely different dose 
dependence for different risk groups
• Fit separate models for each group
• Or specify a parametric dependence on 

clinical factors EUD
VxDmean

EUD
VxDmean
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Modelling including clinical factors

EUD
VxDmean

Advantage:
May help to understand underlying differences 
in pathophysiology

Limitations
• Potential lack of power
• Depends on discrete clinical groups (no 

continuous factors)

EUD
VxDmean

EUD
VxDmean

Good robustness check of models
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Example: Hematological toxicity during pelvic IMRT

Bazan et al. Impact of Chemotherapy on Normal Tissue Complication Probability Models of Acute Hematologic
Toxicity in Patients Receiving Pelvic Intensity Modulated Radiation Therapy. IJROBP, 2013

Pelvic bone marrow dose related to acute toxicity using LKB model

Mitomycin + 5FU Cisplatin
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Cheng et al. Inclusion of biological factors in parallel-architecture normal-tissue complication 
probability model for radiation-induced liver disease. IJROBP, 2005

Example: Radiation induced liver disease
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Modelling including clinical factors
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Modelling including clinical factors

Local
• Dose

Patient-level
• Response / outcome
• Clinical factors

p(Dx1)
p(Dx2)
p(Dx3)
p(Dx3)

Local dose-response function
=> Determine spatial distribution of dose-dependence

Yahya et al. Modeling Urinary Dysfunction After
External Beam Radiation Therapy of 
the Prostate Using Bladder Dose-Surface Maps: 
Evidence of Spatially Variable Response of 
the Bladder Surface. IJROBP 2017

Dose map without symptoms

Dose map with symptoms

Significance map with 
multivariate modelling
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Modelling including clinical factors

Local
• Dose
• Response

Patient-level
• Clinical factors

p(Dx1)
p(Dx2)
p(Dx3)
p(Dx3)

Local dose-response function
=> Determine spatial distribution of dose-dependence
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Modelling including clinical factors

Local
• Dose
• Response
• “Clinical factor”

Patient-level
• Clinical factors

p(Dx1)

p(Dx2)

p(Dx3)

p(Dx3)

Local dose-response function
=> Determine spatial distribution of dose-dependence

Mugler et al. Hyperpolarized 129Xe MRI of the human 
lung. J Magn Reson Imaging, 2013

Functional imaging
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Modelling including clinical factors

p(Dx1)

p(Dx2)

p(Dx3)

p(Dx3)

Local dose-response function
=> Determine spatial distribution of dose-dependence

Significant challenges surrounding within- and between patient variation & multiple 
testing 
• Bowen et al. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-

treatment FDG PET: an exploratory study. Radiother Oncol 2012
• WE-AB-KDBRC-6: Variogram-Weighted Generalized Least Squares Regression to Predict Spatially Variant 

Tumor Voxel Response On Longitudinal FDG-PET/CT Imaging of FLARE-RT Protocol Patients
• Chen et al. Multiple comparisons permutation test for image based data mining in radiotherapy. Radiat

Oncol 2013
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How do we handle larger numbers of risk factors?

EUD
VxDmean
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Estimating the effect of multiple risk factors on dose-response relationships

Example: Radiation pneumonitis
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• Multivariate analysis of both dose and risk factors in full patient data sets
• LARGE number of patients

• Alternative:
Meta-analysis of already existing studies
• Combine dose-response relationships with clinical risk factors as found in meta-analysis

Estimating the effect of multiple risk factors on dose-response relationships
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Adjusting radiation dose–response relationships for clinical risk factors

Assume a fraction s of the patients had a risk factor 

with odds ratio OR.

?

Prevalence s

OR
s

Appelt & Vogelius. ”A method to adjust radiation dose–response relationships for clinical risk factors”, Radiother Oncol 2012;102:352–354
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Adjusting radiation dose–response relationships for clinical risk factors

ORrisk factor 1Þ
”Baseline” dose-response relationship,

for patients without any of the risk factors
Assuming:

No correlation between risk factors

ORrisk factor 2ORrisk factor 3ORrisk factor 4

x n

Appelt & Vogelius. ”A method to adjust radiation dose–response relationships for clinical risk factors”, Radiother Oncol 2012;102:352–354

Estimate dose-response for patients without risk 
factor:



AAPM 2018

Ane Appelt

@cancerphysicist

Adjusting radiation dose–response relationships for clinical risk factors

Assume a fraction s of the patients had a risk factor 

with odds ratio OR. Estimate dose-response for 

patients without risk factor:

Þ
”Baseline” dose-response relationship,

for patients without any of the risk factors

Assuming:

No correlation between risk factors

x n
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Appelt & Vogelius. ”A method to adjust radiation dose–response relationships for clinical risk factors”, Radiother Oncol 2012;102:352–354
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Adjusting radiation dose–response relationships for clinical risk factors

Dose-response for patient with 
specific set of risk factors

ORcombined = ORrisk factor 1* ORrisk factor 2*…
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Appelt & Vogelius. ”A method to adjust radiation dose–response relationships for clinical risk factors”, Radiother Oncol 2012;102:352–354
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• To use this method, we need
• A dose-response relationship for an organ at risk
• A set of risk factors + estimated ORs
• The prevalence of the risk factors in the patient population that provided the 

dose-response relationship

Adjusting radiation dose–response relationships for clinical risk factors
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Dose-response for radiation pneumonitis

= 30.8 Gy (95% CI: 28.7, 33.9)

= 0.97 (95% CI: 0.83, 1.12) .50g

50D
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Clinical risk factor Prevalence in QUANTEC studies

Pre-existing pulmonary co-morbidity 0.258

Mid or inferior tumour location 0.444

Current smoker 0.283

Former smoker 0.663

Old age 0.5

Sequential chemotherapy 0.258

Risk factors for radiation pneumonitis
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• No pulmonary co-morbidities

• Tumour in the upper lobe

• No history of smoking or current smoking habit

• <63 years old

• Not treated with sequential chemotherapy

= 34.4 Gy (95% CI: 30.7, 38.9)

= 1.19 (95% CI: 1.00, 1.43) 

”Baseline” dose-response for radiation pneumonitis 

50g
50D

Appelt et al. Acta Oncol 2014
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Smoker, no risk factors  

Individualized dose-response for radiation pneumonitis 

Patient with highest risk:
• Pulmonary co-morbidities
• Tumour in the middle/lower
• No history of smoking or current 

smoking habit
• >63 years old
• Sequential chemotherapy

Corresponding individualised dose constraints

(iQUANTEC)

Appelt et al. Acta Oncol 2014
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• Estimate (distribution of) predicted benefit of new technology in representative patient cohort

• Design phase III trial using this estimate - rather than a single effect estimate for all patients

• Use phase III trial to test & validate the NTCP model
• Misspecified model can be detected

• Feed phase III result into estimate of benefit for future individual 
patients

• Examplar: 
Randomised phase III trial of proton vs photon 
treatment for locally advanced NSCLC
• Simulate output of large number of trials
• Reduction in sample size of at least 20%
• Trial result will allow for estimate of individual patient benefit

Using the iQUANTEC model to design clinical proton therapy trials

Rydhög, Appelt, et al. Submitted for publication
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• “Development of an isotoxic decision support system integrating 
genetic markers of toxicity for the implantation of a rectum spacer”
van Milk et al. Acta Oncol 2018

• Combine
• QUANTEC model for late rectal toxicity
• Genetic markers (SNPs) for radiosensitivity

identified in meta analysis

• Use image deformation to simulate rectal spacer
implantation, and assess individual benefit in treatment 
planning

Individualised NTCP to assess benefit from new technology
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• Clinical factors can be taken into account on several levels when conducting bioeffect 
(TCP/NTCP) modelling

• Most common approach: Inclusion alongside dose metrics

• In this case, standard GLM regression framework can be used

• Note challenges of estimating CIs / significance levels if also optimising dose metric representation

• Additive factors (OR in logistic regression): 
First order factors

Multiplicative factors (“dose modifying factors”):
Second order factors / interaction effects

• Increasing number of publications examining local dose effects, including clinical factors, 
but methodology is not standardized

• Consider meta analysis approaches

• Planning prospective studies

• Consider integrating TCP/NTCP model to be prospectively validated

Summary


