Cancer Immunotherapy and Radiotherapy Immune Modulation

Magical Effects of the healing beam?

Arta M. Monjazeb, M.D., Ph.D.
Associate Professor of Radiation Oncology
Laboratory of Cancer Immunology
CCSG Staff Investigator for Immunotherapy
UC Davis Comprehensive Cancer Center
Disclosures

- Clinical Trial & Research Funding
 - Genentech
 - Astra-Zeneca
 - Transgene
 - Incyte
 - Merck
 - Dynavax
 - BMS
Immunotherapy: A Revolution in Cancer Therapy
What Is the Immune System

- Main function: recognition of “self” from “non-self” and eliminate “non-self”
How Immune System recognizes non self

Innate Immunity
- Pathogen Associated Molecular Patterns (proteins, carbohydrates, lipids, nucleic acids)
- PRRs
- Mφ
- Pathogen phagocytosis and elimination

Adaptive Immunity
- Naïve T-cell
- Ag presentation
- Co-stimulatory molecules
- Cytokines/Chemokines
- CTL
- Th1
- Th2
- Th17
- Treg
- B cell
- Antibody production
Historical Perspective

1909: Paul Ehrlich proposes concept of immunosurveillance

1950’s-1980’s: Lewis Thomas proposes that the transplant rejection is actually a manifestation of immunosurveillance.

Immunoediting

- Dunn et al. Immunity 2004 (21) 137-148
Timeline of the Development of Immunotherapy

- **1891**: First cancer "vaccine" demonstrated (Coley bacterial toxin)
- **1909**: Cancer occurs spontaneously; immune system recognizes and protects (Elrich)
- **1960s**: Adjuvants (e.g., BCG) shown to eradicate some tumors
- **1960**: BCG approved for bladder cancer
- **1985**: Adoptive immunotherapy for patients with cancer
- **1986**: IFNα approved as cancer immunotherapy
- **1990**: Sipuleucel-T approved as first autologous cellular immunotherapy
- **1992**: IL-2 approved as cancer immunotherapy
- **1990**: Ipilimumab approved for metastatic melanoma

Notes:

BCG = Bacille Calmette-Guérin
IFN = interferon
IL = interleukin
TIL = tumor-infiltrating lymphocyte

Nature Milestones Cancer 2006; S7-S23.
Complex interplay between the host immune cells and the tumor and its microenvironment.
Antigen-presenting cell

- PDL1 or PDL2
- PDL1 or PDL2
- CD80 or CD86
- CD80 or CD86
- B7RP1
- B7-H3
- B7-H4
- HVEM
- Peptide (MHC class I or II)
- CD137L
- OX40L
- CD70
- CD40
- GAL9
- Adenosine

T cell

- PD1
- CD28
- CTLA4
- ICOS
- BTLA
- KIR
- TCR
- LAG3
- CD137
- OX40
- CD27
- CD40L
- TIM3
- A2aR

Cytokines (TGFβ, IL-1, IL-6, IL-10, IL-12, IL-18)

Signal 1
WE CAN CURE CANCERS PREVIOUSLY THOUGHT TO BE INCURABLE

ONLY A MINORITY OF PATIENTS RESPOND TO TREATMENT

Bellmunt et al– NEJM- 2017
Pitt et al. Immunity 2016
• Pulluri et al. Pharmacological Research 2017
Exclusion of Tumor Infiltrating T-cells is a mechanism of resistance to checkpoint blockade

Spranger, Bao, Gajewski - Nature 2015
Radiation: beyond cytotoxicity
Not convinced?

... Two Case Reports of accidental irradiation, circa 1962

- Dayton, Ohio
- Forest Hills, New York
Immunomodulatory Effects of Radiotherapy

Tumor debulking and releasing tumor antigens
Not systemically immunosuppressive
Up regulation of immunogenic cell surface markers
- ICAM-1
- MHC-1
- Fas

Secretion of danger signals & cytokines
- IFN-γ
- TNFα
- IL-1β

Induction of Immunogenic cell death
- Calreticulin
- HMGB-1

Increased homing of immune cells to tumors
- Normalization of tumor vasculature
- Secretion of chemo-attractants (cxcl16)
- Endothelial expression of VCAM-1
- Improved T-cell homing to tumors

Improved antigen presentation by APC’s
- Irradiated tumors prime dendritic cells
- Improved antigen presentation via TLR-4

Depletion of immunosuppressive cells

Shifting TAM polarization to M1

Obeid et al. CDD. 2007; 18: 1848
Apetoh et al. Nature Medicine. 2007; 13(9): 1050
Ganss et al. Ca Research. 2002; 62: 1462
Strome et al. Ca Research. 2002; 62: 1884
Apetoh et al. Nature Medicine. 2007; 13(9): 1050
Upregulation of Immunogenic Cell Surface Markers

Graphical data showing the upregulation of Fas and ICAM-1 in MC38 and MC38-CEA+ cells. The graphs compare the expression levels before and after radiation treatment.

Other graphs illustrate the lymphocyte-mediated killing of MC38 cells in the presence of anti-Fas-L and anti-ICAM-1 antibodies. Tumor growth curves are also shown for different treatments, including no treatment, irradiation, and irradiation with different T-cell subsets.
Normalization of Tumor Vasculature

Ganss et al. Ca Research. 2002; 62: 1462
Increased T-cell Infiltration

Improved Survival

Ganss et al. *Ca Research.* 2002; 62: 1462

Klug et al. *Cancer Cell.* 2013;24:589-602
Pancreatic Tumor Progression Treated with NK cells and Local Radiation

A) Tumor cell injection into flank
B) Inject activated NK cells into tumor

~2-3 weeks for tumor to develop

Local irradiation, 8cGy

5 days
A. CD4+ Subsets
- Effector Memory CD4+ T cells (CD45RA- CD62L+)
- Central Memory CD4+ T cells (CD45RA+ CD62L+)

B. Percent Memory CD4+ of Total Lymphocytes
- Parenchymal
- Bone
- Brain

C. Percent ICOS+ Memory CD4+ of Total Lymphocytes

D. Percent CD25+ Memory CD4+ of Total Lymphocytes

E. Comparing Pre-RT (solid) and Post-RT (hashed)
- p=0.08

UC DAVIDS
Preclinical evidence for synergy between radiation and PD-1 pathway inhibitors

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Radiation Dose</th>
<th>Timing</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deng et al. JCI 2014</td>
<td>TUBO (breast)</td>
<td>12 Gy x 1</td>
<td>4 doses starting with radiation</td>
<td>- Tumor growth</td>
</tr>
<tr>
<td></td>
<td>MC38 (colon)</td>
<td>20 Gy x 1</td>
<td></td>
<td>- Rechallenge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Contralateral tumor growth</td>
</tr>
<tr>
<td>Dovedi et al. Can Res 2014</td>
<td>4T1 (breast)</td>
<td>2 Gy x 5 or 4</td>
<td>3qw for 3 weeks starting day 1 or day 5</td>
<td>- Tumor growth</td>
</tr>
<tr>
<td></td>
<td>CT26 (colon)</td>
<td>Gy x 5</td>
<td></td>
<td>- Survival</td>
</tr>
<tr>
<td></td>
<td>4434 (melanoma)</td>
<td></td>
<td></td>
<td>- Rechallenge</td>
</tr>
<tr>
<td>Sherabi et al. CIR 2014</td>
<td>B16 (melanoma)</td>
<td>12 Gy x 1</td>
<td>3 injections every 3 days starting 1 day before RT</td>
<td>- Tumor growth</td>
</tr>
<tr>
<td></td>
<td>4T1 (breast)</td>
<td></td>
<td></td>
<td>- Rechallenge</td>
</tr>
<tr>
<td>Tywman-Saint Victor et al.</td>
<td>B16 (melanoma)</td>
<td>20 Gy x 1</td>
<td>3 injections every 3 days starting 3 days before or 1</td>
<td>- Tumor growth</td>
</tr>
<tr>
<td>Nature 2015</td>
<td>TSA (breast)</td>
<td>8 Gy x 3</td>
<td>day after RT</td>
<td>- Survival</td>
</tr>
<tr>
<td></td>
<td>PDA (pancreatic)</td>
<td>20 Gy x 1</td>
<td></td>
<td>- Contralateral tumor growth</td>
</tr>
<tr>
<td>Zeng et al. IJROBP 2013</td>
<td>GL261 (glioma)</td>
<td>10 Gy x 1</td>
<td>3 injections 2 days apart starting with RT</td>
<td>- Tumor growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Rechallenge</td>
</tr>
</tbody>
</table>
Selected trials testing PD-1 pathway inhibitors and radiation therapy

<table>
<thead>
<tr>
<th>Histology</th>
<th>Stage</th>
<th>Agent</th>
<th>Type of RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>Metastatic</td>
<td>Pembrolizumab</td>
<td>SBRT or Conformal</td>
</tr>
<tr>
<td>SCLC</td>
<td>Limited or extensive</td>
<td>Pembrolizumab+ Carboplatin+Etoposide</td>
<td>Conformal</td>
</tr>
<tr>
<td>H&N, RCC, NSCLC Skin, Melanoma</td>
<td>Metastatic</td>
<td>Pembrolizumab</td>
<td>Conformal, multiple regimens</td>
</tr>
<tr>
<td>Glioma</td>
<td>Recurrent</td>
<td>Pembrolizumab+ Bevacizumab</td>
<td>SRT</td>
</tr>
<tr>
<td>Colorectal</td>
<td>Metastatic</td>
<td>Pembrolizumab</td>
<td>Unspecified</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Metastatic</td>
<td>Pembrolizumab</td>
<td>SBRT</td>
</tr>
<tr>
<td>H&N</td>
<td>Localized</td>
<td>Pembrolizumab</td>
<td>Fractionated</td>
</tr>
<tr>
<td>Pancreatic cancer, Melanoma, NSCLC, breast</td>
<td>Metastatic</td>
<td>Pembrolizumab</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Melanoma, NSCLC</td>
<td>Metastatic</td>
<td>Pembrolizumab</td>
<td>SBRT</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Metastatic</td>
<td>Pembrolizumab+ Capecitabine</td>
<td>Fractionated</td>
</tr>
<tr>
<td>Breast</td>
<td>Oligometastatic</td>
<td>Pembrolizumab</td>
<td>SBRT</td>
</tr>
<tr>
<td>H&N</td>
<td>Locally recurrent</td>
<td>Pembrolizumab</td>
<td>Fractionated</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>Unresectable</td>
<td>Durvalumab</td>
<td>SBRT</td>
</tr>
<tr>
<td>GBM</td>
<td>Upfront</td>
<td>Durvalumab</td>
<td>Fractionated</td>
</tr>
<tr>
<td>NSCLC</td>
<td>IIIA/IIIB</td>
<td>Nivolumab</td>
<td>Fractionated</td>
</tr>
<tr>
<td>Multiple histologies</td>
<td>Metastatic</td>
<td>REGN2810</td>
<td>SBRT</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Metastatic</td>
<td>MPDL3280</td>
<td>SBRT</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Metastatic</td>
<td>MPDL3280</td>
<td>SBRT</td>
</tr>
<tr>
<td>Colon</td>
<td>Metastatic</td>
<td>AMP224</td>
<td>Unspecified</td>
</tr>
</tbody>
</table>
Rebound Immune Suppression

- Radiotherapy
- Cell Stress
- Acute Inflammation
- Chronic Inflammation
- Immune Suppression

Reactivity | Immunological Homeostasis | Tolerance
RT alone rarely induces a ‘systemic’ anti-tumor response but needs to be combined with immunotherapy to get a true *abscopal* effect.
Radiotherapy modulation of TAMs

In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study

IDO expression is up-regulated by inflammatory therapies.
IDO blockade improves anti-tumor effects of RT + CpG
Canine trial: abscopal response
General Enrollment Criteria

- Advanced refractory solid tumors or lymphoma
- Age ≥18
- 14 day treatment washout period
- At least one candidate treatment lesion (subcutaneous, nodal, or visceral)
 - Accessible for RT
 - Accessible and safe for repeat intralesional injections
- At least one candidate target lesion, outside of the RT field evaluable for response per irRECIST
- Adequate hematologic and end organ function
- No active autoimmune disease
- Patients with previous checkpoint blockade therapy are eligible

Concurrent RT (Days 1-5)
- Cohort 1 (solid tumors): (8 Gy x 3) or (4 Gy x 5)
- Cohort 2 (lymphoma): (8 Gy x 3) or (4 Gy x 5) or (2 Gy x 2)
- Intralesional SD-101 (Day 1, 8, 15, 22, 29)
 - 4 mg injection into RT treatment lesion
 - Epacadostat
 - 100-300 mg PO bid
Selected Cancer Immunotherapy Targets/Strategies

- **Inhibitory Signals**
 - CTLA-4, PD-1/PD-L1, LAG-3, TIM-3, VISTA, BTLA

- **Stimulatory Signals**
 - ICOS, CD40, OX40, 41BB

- **Cytokines**
 - IL-2, IL-12, IL-15, TGF-beta blockade

- **CARS**

- **Adoptive Cell Transfer**

- **Vaccines**
 - PANVAC, Provenge

- **Oncolytic Virus**

- **TLR agonists**

- **Inhibitory Enzymes**
 - IDO, Arginase
RT + HD systemic IL-2

ORR: 66%
Historical response rate: 10-15%

preclinical data: RT + intrallesional IL-2
Recurrent Melanoma
2 Years Later
Key Points

• Radiotherapy has diverse immune modulatory effects
• Clinically significant anti-tumor responses from radiotherapy alone are rare
• There is a Potent synergy potential of RT + IT
• It is a complex system – best combinatorial strategies are likely to also be complex (not the simple addition of adding a short course of IT)
• Best strategy may depend on stage, histology, immunotherapy, patient factors, and desired effect
Questions

• Which / how many lesions to treat for an abscopal effect?
• Sequencing / timing?
• Dose / fractionation? (eg. Conventional vs SBRT?)
Acknowledgements

- UC Davis Comprehensive Cancer Center
- Michael S Kent, DVM
- Rob Rebhun, DVM, PhD
- William Culp, DVM
- Robert Canter, MD
- Peter Dickinson, BVSc, PhD
- Elizabeth E. Sparger, PhD
- Jenna Burton, DVM, MS
- Karen Kelly, MD
- Megan Daly, MD
- Emanual Maverakis, MD, PhD
- UC Davis Laboratory of Cancer Immunology
- Robert Canter, MD
- William J. Murphy, PhD