Modeling of Rational Combinations Between Immunotherapeutic Approach and Radiotherapy

Clemens Grassberger

Rough Outline

- Introduction / Motivation
- Important Aspects Seminal Papers
 - Fractionation
 - Sequencing
- Immuno-RT modeling approaches
- Clinical data informing modeling
 - PET/SPECT
 - MRI
- Conclusion & Discussion

```
The state of states
```

617

very short history of immuno + RT

- anecdotal reports have demonstrated that immune therapy with ipilimumab (human anti-CTLA4 antibody) followed by radiation can lead to extensive tumor regression in melanoma patients (~2011/12)
- Patients treated with radiation following immune therapy, in the 'maintenance phase', showed a significant survival advantage over those treated with radiation during the 'induction phase' (Barker et al. 2013)
- Exact sequencing and fractionation still unclear
 Although checkpoint inhibition is a clear
 breakthrough in the treatment of late stage
 cancer, durable responses rare (except for
 Melanoma)
 Nortubesta
 Nortubesta
 Secure 2 (1999)
 Sec

State Contraction and Address of State of State

Introduction

- Optimization & modeling play a large role in radiotherapy: delivery, fractionation, target dose, OAR tradeoffs
- Immunotherapy modeling is a comparatively recent approach
- Aim of this talk: to show that RT combined with immunotherapy warrants different approaches and introduce Immuno+RT modeling techniques
- Chemo-radiation to some extent been "heuristically" optimized

Introduction

- Optimization & modeling play a large role in radiotherapy: delivery, fractionation, target dose, OAR tradeoffs
- Immunotherapy modeling is a comparatively recent approach
- Aim of this talk: to show that RT combined with immunotherapy warrants different approaches and introduce Immuno+RT modeling techniques
- Chemo-radiation to some extent been "heuristically" optimized

THE STATE COMPANY

Rough Outline

- Introduction / Purpose
- Important Aspects Seminal Papers
 - Fractionation
 - Sequencing
- Immuno-RT modeling approaches
- Clinical data informing modeling
 - PET/SPECTMRI
- Conclusion & Discussion

AND DESCRIPTION OF MERCINES

1111

Fractionation – Dewan et al. 2009

Hypothesis: type of dose fractionation regimen determines the ability of radiotherapy to synergize with anti–CTLA-4 antibody

.

Practicensied but Not Single-Dose Radiotherapy Induces an Immune-Madusid Abacopal Effect when Contribute with Arti-CTLA4 Artifistory II: Junkanak Jewer, Adato L Salaway, Inche Geseller, A Get Desynami, James S Bank, Tales T Ammen, and Embar Desaid.

1111

- Radiation induces an immunogenic tumor cell death and
 alters tumor microenvironment; enhance recruitment of antitumor T cells
 can enhance both the priming and the effector phase of the antitumor immune response
 - shown that before: local RT induces a CD8 T-cell–mediated immune response inhibiting lung micromets if combined with anti-CTLA-4
- results were actually determining the dosing and fractionation of the first clinical trials testing immunotherapy + RT

All and a second second

Fractionation - Dewan et al. 2009

Fractionation – Dewan et al. 2009

Fractionation – Vanpouille-Box et al. 2017

- Mechanism behind that thought to be connected to cytosolic DNA accumulation
- . Cytosolic DNA stimulates secretion of interferon-b

.

ightarrow recruitment and activation of dendritic cells

- → essential for priming of CD8+ T-cells DNA exonuclease Trex1 is induced by
- radiation doses above 12–18Gy \rightarrow degrades DNA that accumulates in
 - the cytosol upon radiation
 - → attenuates their immunogenicity

Sequencing – Young et al. 2016

Hypothesis: depending on the mechanism of action of immunotherapy, the optimal timing of radiation and immunotherapy will be different

Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy

- . little data exist regarding the ideal timing of immunotherapy combined with radiation test the optimal timing of two distinct immunotherapy approaches • checkpoint inhibitor (anti-CTLA-4) • co-stimulatory agonist (anti-OX40) .

the manual -----

1117

Checkpoint Inhibitors vs Co-Stimulatory Agonists

Sequencing – Young et al. 2016

Rough Outline

- Introduction / Purpose
- Important Aspects Seminal Papers
 - Fractionation
 - Sequencing
- Immuno-RT modeling approaches
- Clinical data informing modeling
 - PET/SPECT
 - MRI
- Conclusion & Discussion

The state of states

(iii) m

Immuno – RT modeling

Immuno – RT modeling

Immuno – RT modeling

Immuno – RT modeling

$$\begin{split} \frac{dT}{dt} &= r(t) \times T - d_{T}(T,I) \\ \frac{dI}{dt} &= p_{I}(T,I) - d_{I}(T,I) - a_{I}(I) + j(t) \end{split}$$

reproduce the basic behaviours of the tumor-immune interaction: elimination - equilibrium - escape

Example - dePillis et al. 2005-09

100 112/10 -----

Model includes

- Innate immunity: NK cells
- Adaptive immunity: CD8+ T cells
- Purpose: to study the relative importance of these 2 populations for long-term tumor control

in The

111

Example - dePillis et al. 2005-09 Model includes Immune effector cells CD8+ Innate immunity: NK cells Tumor Adaptive immunity: CD8+ T cells Tumor $\frac{dT}{dt} = aT(1-bT) - cNT - D$ $\frac{dN}{d^2} = \sigma - \beta N + \frac{\beta T^2}{\mu - T^2} N - \mu \delta T$ NK Natural killer (NK) cells $\frac{dT}{dt} = -6L - \frac{dT}{k+d^2}L - gLT + rhT$ CD8+ $a=e\frac{(t/t)^2}{-1}(t/t)^2}\tau$ dePillis Cancer Res 2005; 65: (17) We have to serve Without the 612

Example - dePillis et al. 2005-09

State of the state

Model includes Innate immunity: NK cells

- Adaptive immunity: CD8+ T cells
- Purpose: to study the relative importance of these 2 populations for long-term tumor control
- Outcome most sensitive to CD8+ tumor lysis term -> can be measured in assay

dePillis Cancer Res 2005; 65: (17) 101

Example – Serre et al. 2016

Example – Serre et al. 2016

Example – Serre et al. 2016

Example – Serre et al. 2016

Immuno – RT modeling: local models

10

From Model to Prediction – Model Parameterization

Achilles heel - model parameters

Rough Outline

- Introduction / Purpose
- Important Aspects Seminal Papers
 - Fractionation
 - Sequencing
- Immuno-RT modeling approaches
- Clinical data informing modeling
 - PET/SPECT
 - MRI
- Conclusion & Discussion

Hard Literature . . .

(i) ···

Correlation Lymphocyte Count – Survival

independent of indication lymphocyte counts during chemo-radiation all look similar

in the

Correlation Lymphocyte Count – Survival

- independent of indication lymphocyte counts during chemo-radiation all look similar
- only provide a snapshot of the lymphatic system Circulating lymphocytes only present ~2-5% of the total population

Correlation Lymphocyte Count – Survival

	Site	Ν	Тх	measure & timepoints	HR for OS		
Mendez et al. 2017	GBM (elderly >=65)	72	radiation +TMZ	TLC, monthly after intiation	2.76 [1.3- 5.86]		
Liu et al. 2017	nasopharynx	413	cCRT (gem)	ALC, weekly during, directly post, 3m post	1.76 [1.12- 2.78]		
Chadha et al. 2017	pancreas	177	induction (gem) + cCRT	ALC, 2-10 weeks after	1.66 [1.13- 2.43]	spleen DVH study	
Tang et al 2014	NSCLC	711	RT+- chemo	ALC, "continuously" throughout irradiation	1.96 *	correl low- dose bath with lymph	
Cho et al 2016	cervix	124	cCRT (weekly cis)	ALC, weekly during	3.28 [1.27- 8.48]		
Cho et al 2016b	LS-SCLC	73	s/cCRT (EP)	ALC, weekly during	2.67 (1.06-6.75)		
Davuluri et al 2017	esophagus	504	CRT (def or neoadj)	ALC, weekly during	1.35	proton vs photon	
Grassberger	liver	44	RT +- induction	Lymphocyte panel, weekly during	-	proton only	

Lymphocyte Sub-Populations

- Evaluated 4 lymphocyte sub-populations during RT in liver cancer patients, including hepatocellular carcinoma (HCC) and intra-hepatic cholangiocarcinoma (ICC) patients :

 CD4+CD25+
 CD4+CD127+
 CD4+CD127+
 naïve and central memory T cells
 CD3+CD8+CD25+
 - activated cytotoxic T lymphocytes (CTLs) - CD3-CD56+ natural killer (NK) cells

Grassberger et al. IJROBP 2018

Differential Association with Survival

100 IIII/III/-----

0.45

24

00

an a

Differential Association with Survival

- differential association with survival
 - ICC: OS was significantly correlated with greater Treg (p=0.003) and naïve and central memory T cell (p=0.01) fractions at baseline
 - HCC: fraction of activated CTLs mid-treatment (at day 8) was significantly associated with OS (p=0.007).
- Importance of investigating lymphocyte sub-populations
 - clearer "signal"
 - differential immunosuppression in different indications

AND DESCRIPTION OF A DE

111

Imaging the Immune Response

Imaging the Immune Response

Imaging the Immune Response

 MRI: super-paramagnetic iron oxide nanoparticles (SPIONs)
 generally phagocytosed by monocytes and macrophages, allowing for image contrast in inflammatory conditions such as infections
 ex vivo labeling and in vivo tracking of specific cell populations, such as

dendritic cells or other leukocytes • MRI-based techniques have the advantage of excellent spatial resolution, two major short-comings

1. sensitivity of MRI is somewhat low, preventing the detection of

responses which are not densely populated by the cells of interest. 2. direct quantification can be difficult in MRI

. unect quantification can be unificult in w

1909 10270 10	Ø 1000000000	10 P
and a second second second	point of an Oktowe Inch	

The Case for Immunotherapy-RT Modeling

Conclusion & Takeaways

- Preclinical experiments showing importance of fractionation & sequencing
 - Modeling Immuno-RT
 - ODE based systems

.

- Tailored to immune-drug interaction, not radiotherapy
- Fractionation/RT dose not explored yet

Conclusion & Takeaways

- Preclinical experiments showing importance of fractionation & sequencing
- Modeling Immuno-RT
 - ODE based systems
 - Tailored to immune-drug interaction, not radiotherapy
 Fractionation/RT dose not explored yet
- Global vs Local models
 - Tumor seen as one compartment vs explicit treatment of different metastatic sites
 - Informing different questions in stage III/IV
 - emerging question in stage III disease:
 - Is the purpose of the (chemo-)RT regimen to

maximize cell kill ?

maximize / modulate the immune response ?

The second secon

Conclusion & Takeaways

- Preclinical experiments showing importance of fractionation & sequencing
- Modeling Immuno-RT
 - ODE based systems
 - Tailored to immune-drug interaction, not radiotherapy
 - Fractionation/RT dose not explored yet
- Global vs Local models
- trade-off in general dose level / intensity of chemo-RT
 - radiation eliminates tumor cells -> decreases the tumorinduced immunosuppression
 - Highdose radiation is associated with increased antigen expression and induction of immunogenic cell death
 - High-dose radiation is also associated with depletion of lymphocytes, dampening immune responses

```
Hand Little ------
```

Conclusion & Takeaways

- Preclinical experiments showing importance of fractionation & sequencing
 - Modeling Immuno-RT

.

- ODE based systems
- Tailored to immune-drug interaction, not radiotherapy
- Fractionation/RT dose not explored yet
- Global vs Local models
- trade-off in general dose level / intensity of chemo-RT
 - Immune Surveillance techniques
 - Lymphocyte counts Global
 - Emerging interest in lymphocyte subpopulations
 Imaging (PET/SPECT/MRI) Local
 - Dynamic information

```
HOR LICENCE MINIMUM
```

1117

min

special thanks to

alla manali -----

Harald Paganetti Thomas Bortfeld Lecia Sequist Henning Willers Sophia Kamran David Hall Aimee McNamara Torunn Yock David Craft & many others

Parts of the work supported by NCI Co6 CA059267