Reconstruction across imaging modalities: MRI

Brad Sutton

bsutton@Illinois.edu Bioengineering and Beckman Institute

ILLINOIS Beckman Institute for Advanced Science & Technology

Introduction to Spins and Classical MRI Physics

Non-Cartesian: Direct Reconstruction Approach

$$s(\vec{k}) = \int_{FOV} m(\vec{r}) e^{-i2\pi \vec{k}(t)\cdot\vec{r}} d\vec{r}$$

Signal Equation for MRI NOTE: dr is evenly spaced pixels

Can perform Inverse Fourier Transform, but must be careful

$$\hat{m}(\vec{r}) = \int_{\vec{k}} s(\vec{k}) e^{i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{k}$$

IFT Reconstruction NOTE: dk is NOT evenly spaced

- Have to take into account differences in sampling density in different areas of k-space, $d\vec{k}$

Sample Density Compensation

- Density compensation function (DCF) represents the differential area element for each sample.
- Can calculate DCF in many ways:
 - Voronoi area (shown)
 - Analytical formulation of gradient
 - Jacobian of time/k-space transformation
 - PSF optimization

Gridding: Fast, accurate, direct recon

Steps in Gridding

- 1. Density compensate k-space data w(k)*s(k)
- 2. Convolution with a fixed-width blurring kernel to fill in continuous sampling of k-space
- 3. Resample data at uniform Cartesian locations
- 4. Inverse FFT
- 5. Deapodization: Eliminate the effect of the fixed kernel interpolator.

Convolution in k-space is multiplication in image space, so we can remove the effect of the convolution by dividing by the FT of the kernel in image space.

Jackson, et al. IEEE Trans Med Imaging. 1991;10(3):473-8.

Inverse Problem Approach

Instead of direct inversion, inverse problem approach enables advanced image acquisition and reconstruction

- Variety of <u>additional physics</u> can be accommodated in the signal equation for MRI, enabling advanced acquisitions and reconstructions
 - <u>Coil sensitivities, magnetic field inhomogeneity</u>, k-space trajectory distortions, eddy currents, subject motion, R2* decay, …
- Image regularization penalties can enable faster imaging while making high quality images from <u>fewer samples</u>
 - Total variation, compressed sensing, low rank, ...
- Do not need to know sample density compensation function for inverse problem

Types of Regularization/Constraints in MRI

- · Not an exhaustive list, just main ones
- Energy penalty, reference image, Tikhonov
- Roughness penalty, first order derivative,
- TV total variation
- Compressed sensing
 - Sparsity, Finite differences, DCT, Wavelets, ... thresholding
- Something to keep in mind: MRI images are complex valued have magnitude and phase

What you can achieve with PS-Sparse

Subject:

A female speaker of Mid-Atlantic American English

Spatial coverage: $280 \times 280 \times 40 \text{ mm}^3$

Matrix size: $128 \times 128 \times 8$

Spatial resolution: 2.2 × 2.2 × 5.0 mm³ Nominal Frame Rate: 166 frames per second!

Carrier Phrase - "I said writing to you, I said riding to you" [1]

Fu, Barlaz, Holtrop, et al. Magn Reson Med 77(4): 1619, 2017. M. Barlaz et al, InterSpeech, 2015.

Speeding Up Acquisitions: Parallel Imaging

- Reconstruction approaches above did not leverage the use of multiple, smaller receiver coils
- Each coil is most sensitive to tissue in its local area
- Reduced spatial encoding requirements because aliasing signal may overlap region where there is low sensitivity for a coil
- Easily incorporated into cost function for sensitivity encoding (SENSE)

Kaza, Klose, and Lotze. J Magn Reson Imaging. 34:173 (2011)

COMPUTATIONAL Challenge of Image Reconstruction

- Large matrix size
 - 1.25 mm isotropic data set
- Data Size:
 - 18 GB for 6.5 min scan
- Physics:
 - 3D non-Cartesian (Spiral) sampling
 - Parallel Imaging with 32 channel coil
 - Magnetic Field Inhomogeneity Correction
 - Motion-induced Phase Correction
- Reconstruction Time
 Adve for reconstruction running on we
 - 8 days for reconstruction running on workstation
- Graphics Processing Units (GPU)
 - 200 times faster: <1 hour.
 - Enables imaging resolutions not feasible before.

GTX 1080 Ti: ~\$700 (11 GB) CORES: 3584 Boost Clock: 1582 MHz

IMPATIENT MRI:

Illinois Massively Parallel Acceleration Toolkit for Image reconstruction with ENhanced Throughput in MRI

PowerGrid –ISMRM 2016, p. 525

Push for Free, Open Source, Common Platforms for Image Reconstruction

- Advanced reconstructions are more complex than Fourier Transform, but enable significantly higher resolutions and shorter scan times.
- Image reconstructions can be specific for the sequence, MRI vendor platform, image reconstruction hardware, and can be difficult to reimplement from paper
- There is a growing effort at creating broad-based utilities to enable reproducibility, distribution, scaling, and impact
- Just a few listed here...

HARVARD

MEDICAL SCHOOL

Georges El Fakhri, PhD, DABR Gordon Center for Medical Imaging Massachusetts General Hospital Harvard Medical School

Gordon Center

for Medical Imaging

-

MASSACHUSETTS GENERAL HOSPITAL

мĜн

History of PET at MGH

The birthplace of Positron Emission Imaging was at MGH in 1952 in the Center for Radiological Sciences (Ancestor of the Gordon Center for Medical Imaging) where the first positron-imaging device was invented by Dr Gordon Brownell and used for the detection of brain tumors for neurosurgery by Dr Sweet (1953)

Coincidence (a) and "unbalance" (b) scans of a patient with recurring tumor (left) under previous operation site [Brownell and Sweet,

(a)

What is tomography?

- Greek translation:
 - tomos means slice, section
 - graph means write
- 2-D representations of structures in a selected plane of a 3-D object
- Mathematical algorithms can be used to reconstruct the original 3-D object from the 2-D projections
- Used in medical imaging
 - SPECT and PET-Emission computed tomography
 - CT-Transmission computed tomography

(b)

Gamma Ray Emission	
Nucleus drops to lower energy state.	
excess energy	
	Gordon
MGH ISII	Center for Medical Imaging

30

Exam	ole: T	vpical	Whole	Bodv	PET

Type of coincidence	Percentage (%)
Raw	100
Trues	38
Randoms	34
Scattered	28
Multiple	7
MGH	Gordon Center fo Medical

_	Positron range and intrinsic resolution (2)				
	lsotope	Maximum positron energy (MeV)	Mean positron energy (MeV)	Range in water FHWM (mm)	
	¹⁸ F	0.64	0.25	0.10	
	¹¹ C	0.96	0.39	0.19	
	¹³ N	1.19	0.49	0.28	
	¹⁵ O	1.70	0.74	0.50	
	⁸² Rb	3.15		1.6	
	MGH 1811				Gordon Center for Medical Imaging

Iterative vs. FBP • Advantages of iterative methods: · The results must be better because the correct physics is included in the reconstruction: The reconstruction algorithm "knows" the physics Attenuation correction · Reduction of streak artifact Overall quality Disadvantages of iterative methods (MLEM) · Slow convergence to the desired solution (e.g. tens hundreds of iterations) · Computationally demanding - number of iterations and inclusion of the physics Gordon Center for Medical Imaging

Analytic v	's iter	ative	reco	onstru	uctio	ns	
	FBP, 1	0 min ei	mission	2537.00			
	- 離却	い然の	4.能力	15 <u>8</u> 6	8 8 /8	-	
	****	9. 88 9	0.5675	100005	-1369 M		
		NO.					
	at Sec.	- (S.)		- X -	-13 h	2 1 1	
MGH 1811		(Q))					Gordon Center for Medical Imaging

Analytic vs iterative reconstructions										
	OSEM, 10 min emission									
	×#19	1. M.D	A.M.D		C. R. D	Charles In				
	0.000	0.9859	(W)	a :44° >>	1998 B	19 (M)				
		N.Y.D	C. B.S.	10 m	(1. C. S.	- C F 33				
	1. A	a (1974)	(A.C.).6	AT \$ 16	1.00	11016				
MGH 1511	1	4000	100	a (10) 1	a () s	4 (M)	Gordon Center for Medical Imaging			

How to deal with unequal measurement noise (Simple Estimation Problem)

Maximum Likelihood Estimation

Find the parameter values most likely to be responsible for the observed data.

Likelihood Function
$$L(\mathbf{x}; \boldsymbol{\mu}) = p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N | \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_M)$$

 $L(\mathbf{x}; \boldsymbol{\mu}) = p(\mathbf{x} | \boldsymbol{\mu}) = \prod_{i=1}^{3} p(x_i | \boldsymbol{\mu}) \quad p(x_i | \boldsymbol{\mu}) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{1}{2\sigma_i^2}(x_i - \boldsymbol{\mu})^2\right)$
Maximum Likelihood Objective Function $\hat{\boldsymbol{\mu}} = \operatorname{argmax} L(\mathbf{x}; \boldsymbol{\mu})$
 $\frac{\partial}{\partial \mu} \log L(\mathbf{x}; \boldsymbol{\mu}) = \sum_{i=1}^{3} \frac{1}{\sigma_i^2}(x_i - \boldsymbol{\mu}) \quad \underset{\frac{\partial}{2\mu}=0}{\longrightarrow} \quad \hat{\mu} = \frac{\sum_{i=1}^{3} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{3} \frac{1}{2}}$

Maximum Likelihood Estimation for CT Log transformed data case (e.g. $l = -\log \left[\frac{y}{l_0}\right]$)

$$\bar{l}(\mu) = \boldsymbol{A}\mu \qquad P_{l_i} = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{1}{2\sigma_i^2} (l_i - \bar{l}_i(\mu))^2\right)$$

Likelihood-based Objective $\log L(y;\mu) = -\sum_{i=1}^{N} \frac{1}{2\sigma_i^2} \log(2\pi \frac{2}{i}) - \sum_{i=1}^{N} \frac{1}{2\sigma_i^2} (l_i - [A\mu]_i)^2$

$$= -[l - \mathbf{A}\mu]^T \mathbf{D} \left\{ \frac{1}{\sigma_i^2} \right\} [l - \mathbf{A}\mu] = -\|l - \mathbf{A}\mu\|_{\Sigma^{-1}}^2$$

Solve for
$$\mu$$
 $\hat{\mu} = \operatorname{argmax} \log L(y; \mu) = \left[\mathbf{A}^T \mathbf{D} \left\{\frac{1}{\sigma_i^2}\right\} \mathbf{A}\right]^{-1} \mathbf{A}^T \mathbf{D} \left\{\frac{1}{\sigma_i^2}\right\} l$

Additional Information through Regularization

Integrating information via a change in the objective function

 $\hat{\mu} = \operatorname{argmax} \log L(y; \mu) - \beta R(\mu)$ Penalized-Likelihood Estimation

Choices of regularization $R(\mu)$

Local smoothness Edge-preservation Prior images Patches/dictionaries/learned regularization

FBP vs (Quadratic) Penalized-Likelihood									
f _c =100	f _c =0.9	f _c =0.8	f _c =0.7	f _c =0.6	f _c =0.5	f _c =0.4	f _c =0.3		
					1.7			R	
σ ² =2.81e-005	σ^2 =4.56e-006	σ ² =3.38e-006	σ ² =2.44e-006	σ ² =1.69e-006	σ ² =1.09e-006	σ^2 =6.69e-007	σ ² =3.88e-007	LA REAL PORTING TO DESCRIPTION	
R	R	R	R		R	R	R	用相對作用	
								and the second second	
β=10 ⁰	β=10 ¹	β=10 ²	β=10 ³	β=10 ⁴	β=10 ^{4.5}	β=10 ⁵	β=10 ^{5.5}		
								R	
σ ² =4.47e-006	σ ² =4.47e-006	σ ² =4.44e-006	σ ² =4.24e-006	σ ² =2.84e-006	σ ² =1.52e-006	σ ² =6.03e-007	σ ² =2.03e-007	Carrier Contraction of the	
R	R				R	R	P		
h Nelvinet.								Straight -	

Regularization using Prior Images

Prior Image Registration Penalized-Likelihood Knowledge of anatomy Estimation (PIRPLE) Target locations Previous imaging studies Traditional Model-Based Current Reconstruction Post-treatment assessments Anatomy Monitoring disease progression Low-Dynamic studies id elit Data Initial Scan Follow-up Scan (+6 months) Prior-Image-Based Prior Reconstruction Image $\{\hat{\mu}, \hat{\lambda}\} = \operatorname{argmax} \log L(y; \mu) - \beta_R R(\mu)$ **Image credit: Y. T. and F. W. Poon, "Imaging of solitary pulmonary $-\beta_P \|\mu - \mathbf{W}(\lambda)\mu_P\|_1$ nodul a clinical review," Quant. Im. in Med. and Surg. 3(6), Dec. 2013 Prior Image Registration Penalty Term

<section-header><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block>

Regularization using Patches/Dictionaries General/learned knowledge of image features **Objective Function** Need a dictionary of features/patches $\{\hat{\mu}, \hat{\lambda}\} = \operatorname{argmax} \log L(y; \mu)$ Sparse representations, $\left(\sum_{p} \left\| \mathbf{E}_{p} \boldsymbol{\mu} - \mathbf{D} \boldsymbol{\lambda}_{p} \right\|_{2}^{2} + \sum_{p} v_{p} \left\| \boldsymbol{\lambda}_{p} \right\|_{0} \right)$ linear combinations of few patches $\mathbf{D}\lambda_p$ × 0.1 + $\mathbf{E}_{\boldsymbol{v}}\mu$ $\times 0 +$ D $\times 0.7 +$ $\times 0 +$ 0.010 × 0 + Images adapted from: Q Xu, H Yu, X Mou, L Zhang, J Hsieh, G Wang, "Low-dose x-ray CT reconstruction via dictionary learning," IEEE Trans. Medical Imaging, 31(9), September 2012.

Image credits: Q Xu, H Yu, X Mou, L Zhang, J Hsieh, G Wang, "Low-dose x-ray CT reconstruction via dictionary learning," IEEE Trans. Medical Imaging, 31(9), September 2012.

Additional Information in the Forward Model

 $\bar{y}(\mu) = I_0 \exp(-\mathbf{A}\mu)$

Forward model has many simplifications in physics... Model ignores Scatter Spectral effects Focal spot blur Detector blur

Object model may have constraints Nonnegativity Known element/components in the field-of-view

CT Reconstruction Summary

Advanced Reconstruction Aims

Dose reduction, improved image quality

CT Forward Model

Nonlinear, but often linearized Measurement statistics are important (SNR varies widely) Advanced physical modeling permits image quality improvements

CT Regularization Strategies

Standard smoothness and edge-preservation Use of prior images (e.g., sequential studies) Generalized dictionary methods including machine learning

Other Objective Function Modifications

Additional constraints on the object (e.g., known components)

Acknowledgements

Advanced Imaging Algorithms & Instrumentation Laboratory

Faculty and Scientists

Grace Gang (AIAI) Amir Pormorteza (AIAI) Jeffrey Siewerdsen (I-STAR) Alejandro Sisniega (I-STAR) Adam Wang (I-STAR) Shiyu Xu (AIAI) Wojciech Zbijewski (I-STAR) Hao Zhang (AIAI)

Clinicians

John Carey - Otolaryngology Kelvin Hong - (Interventional) Radiology Satomi Kawamoto - Radiology A Jay Khanna - Orthopaedic Surgery Eleni Liapi - Radiology Tony Lin - Radiology Martin Radvany - (Interventional) Radiology Marc Sussman - Thoracic Surgery Clifford Weiss - (Interventional) Radiology John Wong - Radiation Oncology

AIAI Laboratory

Advanced Imaging Algorithms and Instrumentation Lab aiai.jhu.edu stayman@gmail.com

Students

Hao Dang Juliana Carneiro Gomes Andrew Mao Gabriela Rodal Saeed Seyyedi Steven Tilley II Ali Uneri Wenying Wang Chengzhu Zhang Esme Zhang

Funding/Support

NIH: U01EB014964, R01EB025470, R21CA219608, R21EB014964, KL2TR001077, R01CA112163 Academic-Industry Partnerships: Siemens, Varian Medical Systems, Elekta AB, Carestream Health Research Partnership/Agreements: Philips Healthcare, Canon Medical

This work was supported, in part, by the above grants. The contents of this presentation are solely the responsibility of the authors and do not necessarily represent the official view of Johns Hopkins, the NIH, or other organizations.