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Reconstruction 
across imaging 
modalities: MRI

Brad Sutton

bsutton@Illinois.edu

Bioengineering and Beckman 
Institute

Introduction to Spins and Classical MRI Physics

Spinning proton == SPIN
Spinning proton has a magnetic moment :: 

Classical Description: Behaves as a bar magnet.

Most MRI scans are 
looking at hydrogen 
nucleus. 

This is good: Body is 
mostly water  H2O

Other nuclei are available 
in MRI:

13C, 19F, 23Na, 
others

H+

N

S
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Sample outside the MRI magnet, spins 
randomly oriented.

N

Place sample in the MRI magnet…

Net 
Magnetic 
Moment

MRIS

Static Field 
ON
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From spins to signal: 

When tipped away from the 
main field, then begins to 
precess. Precesses at a 
frequency proportional to the 
magnetic field strength. At 3 
T = 128 MHz

Net magnetic 
moment from 
spins

N

S

Static Field 
ON N S

R
F

Localization in Space: Larmor Precession
Since frequency is proportional magnetic field strength

if we apply a magnetic field that varies with spatial position, 

the  precession frequency varies with spatial position.

x Position

B
Mag. Field
StrengthLow Frequency

High Frequency

x Position

High Frequency

Low Frequency

Object

From Noll: fMRI Primer: http://fmri.research.umich.edu/documents/fmri_primer.pdf



7/30/2018

4

Magnetic 
Field 
Strength Spatial position

RECEIVED 
SIGNAL IS SUM 
OF ALL THESE 
SIGNALS.

Fourier Image Reconstruction (1D)

MR Signal
Fourier
Transform

x Position

High Frequency

Low Frequency

Object

1D Image

time

Projection similar to CT!

From Noll: fMRI Primer: http://fmri.research.umich.edu/documents/fmri_primer.pdf
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2D Imaging - 2D Fourier Transform

• Fourier encoding also works in 2 and 3 dimensions:

2D
FT

x kx

ky

y

K-space
• We keep track of how much 

encoding (gradient amplitude times 
time it is on) by location in k-space:

• This is similar to wave number or K-
number, it captures the number of 
spatial cycles of intensity per unit 
distance 

• Fill in k-space, then reconstruction 
by Fourier Transform = 42.58 MHz/Tesla
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What about non-Cartesian Acquisitions?

• Instead of sampling regular k-space locations on a 
Cartesian grid, more efficient sampling might include:

RADIAL SPIRAL

Non-Cartesian: 
Direct Reconstruction Approach

• Can perform Inverse Fourier Transform, but must be 
careful

• Have to take into account differences in sampling density 
in different areas of k-space, 

Signal Equation for MRI
NOTE: dr is evenly spaced pixels

IFT Reconstruction
NOTE: dk is NOT evenly spaced
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Sample Density 
Compensation

• Density compensation function 
(DCF) represents the differential 
area element for each sample. 

• Can calculate DCF in many 
ways:
– Voronoi area (shown)

– Analytical formulation of gradient

– Jacobian of time/k-space 
transformation

– PSF optimization
DCF Calculation via Voronoi diagram for 4 shot 
spiral, showing sampling locations and 
differential area elements

With DCF, now can perform recon
• Inverse Discrete Space Fourier Transform

• But for large problems, we would like to 
use the Fast Fourier Transform (FFT). 
– k is still not equally sampled on regular grid: 

requirement for FFT!

• What are the options?

Density Compensation 
Function

Simply INTERPOLATE onto regular grid and then use FFT?
We will show that we can do better than that with GRIDDING!
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Gridding: Fast, accurate, direct recon
• Steps in Gridding

1. Density compensate k-space data     w(k)*s(k)

2. Convolution with a fixed-width blurring kernel to 
fill in continuous sampling of k-space 

3. Resample data at uniform Cartesian locations

4. Inverse FFT

5. Deapodization: Eliminate the effect of the fixed 
kernel interpolator.

Convolution in k-space is multiplication in image 
space, so we can remove the effect of the 
convolution by dividing by the FT of the kernel in 
image space.

Jackson, et al. IEEE Trans Med Imaging. 1991;10(3):473-8.

1D simulation from: Noll 
and Sutton, ISMRM 
Educational Session, 2003.

Gridding is more accurate 
than interpolation

• 1D Example: Non-uniform 
spaced samples

• Compared to nearest neighbor 
interpolation and cubic spline

• Eliminating effect of interpolation 
drastically increases accuracy!

NRMSE:
Nearest: 0.073
Cubic: 0.0143
Gridding: 6.7e-5
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Inverse Problem Approach
Instead of direct inversion, inverse problem approach 
enables advanced image acquisition and reconstruction 
• Variety of additional physics can be accommodated in the signal 

equation for MRI, enabling advanced acquisitions and 
reconstructions

– Coil sensitivities, magnetic field inhomogeneity, k-space trajectory 
distortions, eddy currents, subject motion, R2* decay, …

• Image regularization penalties can enable faster imaging while 
making high quality images from fewer samples

– Total variation, compressed sensing, low rank, …

• Do not need to know sample density compensation function for 
inverse problem

Signal Model for MRI

Sensitivity Maps

Object Field Map, 𝜔K-space trajectory

C1 C2

C3 C4
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Inverse problem approach
• In complex-valued MRI, noise is complex Gaussian.

• Makes statistics easier than other modalities

• Can use least squares approaches for image 
reconstruction

• Can add regularization to help with the usually ill-
conditioned problem, provides prior information on 
acceptable solutions, through some function 

Example: Magnetic Field Inhomogeneity
Image Distortion

Distortion depends on 
K-space trajectory and 
bandwidth (how fast 
sample k-space). 

(ppm)B0

Incorporation of the field 
inhomogeneity map into the 
inverse problem to correct 
for it.

Air/tissue interfaces cause 
most magnetic field 
disruptions, for example 
around sinuses. 

Air/Tissue interfaces 
can cause up to ~1 KHz
off-resonance at 3 T
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Example: Magnetic Field Inhomogeneity

Holtrop and Sutton. J Medical imaging. 3(2): 023501 (2016).
Sutton, et al. J Magn Reson Imaging. 32:1228 (2010)

High Resolution (0.8 mm isotropic) 
diffusion MRI, b=1000 s/mm2

Field MapCorrectedUncorrected

Dynamic Speech 
Imaging with 
FLASH. Air/tissue 
susceptibility can 
be 1.2 kHz at 3 T.

Uncorrected Corrected

Regularization and Constraints

• Image reconstruction is ill-conditioned problem 
– Sample only the minimum data (or less) that we need to keep 

scan time short

– Push the spatial resolution higher  signal-to-noise lower

– Non-ideal experimental conditions
• Magnetic field map changed since measurement

• Coil sensitivies changed

• K-space trajectory deviations

• Must enforce prior information on the solution in order to 
achieve a high quality image
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Types of Regularization/Constraints in MRI

• Not an exhaustive list, just main ones

• Energy penalty, reference image, Tikhonov

• Roughness penalty, first order derivative, 

• TV - total variation

• Compressed sensing
– Sparsity, Finite differences, DCT, Wavelets, … thresholding

• Something to keep in mind: MRI images are complex 
valued – have magnitude and phase

Compressed Sensing
• CS takes advantage of k-space sampling 

patterns that cause incoherent aliasing 
from the undersampling.

– Distributes aliasing energy around in 
an incoherent manner

– Makes it noise-like

• Transforms images into a domain where 
they are sparse

• Recovers sparse coefficients in the 
background noise of aliasing – similar to 
denoising algorithms

https://people.eecs.berkeley.edu/~mlustig/CS.html

Figure from: Lustig, Donoho, Pauly. 
Magn Reson Med, 58:1182 (2007)
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Low Rank through Partial Separability

• Not only are images typically sparse in finite difference or 
wavelet domains, dynamic timeseries data are typically 
low rank

• Low rank indicates strong spatial-temporal correlations in 
the data set. 

• Simple example to play around with at:

http://go.illinois.edu/LowRank

Partial Separability (PS) Model

 Leverages strong spatiotemporal correlation

 Lth order Partial Separability model: 

/loo/ - /lee/ - /la/ sounds
100 frames per second

Z.-P. Liang, IEEE-ISBI, 2007. 



7/30/2018

14

Partial Separability Model 

Z.-P. Liang, IEEE-ISBI, 2007. 

Partial Separability Model

28 Z.-P. Liang, IEEE-ISBI, 2007. 
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 Step 1: determination of temporal basis functions 

 Step 2: estimation of spatial basis functions 

 Step 3: synthesis of (k, t )-space / (x, t )-space data 

PS Model-based Image Reconstruction

Fu et al, Magn Reson Med, 2015, 2017

PS-Sparse Reconstruction
• Jointly enforcing the partial separability constraint and the spatial-spectral 

sparsity constraint

• Formulation: 

• An algorithm based on half-quadratic regularization has been proposed to 
solve this optimization problem [1].

dB

× 105

(x, f ) - spectrum

[1] B. Zhao et al, TMI, 2012.

Sorted (x, f ) - coefficients

Data consistency constraint Spatial-spectral sparsity constraint
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Subject:
A female speaker of Mid-
Atlantic American English

Spatial coverage:
280 × 280 × 40 mm3

Matrix size:
128 × 128 × 8

Spatial resolution:
2.2 × 2.2 × 5.0 mm3

Nominal Frame Rate:
166 frames per second!

What you can achieve with PS-Sparse

Carrier Phrase  – “I said writing to you, I said riding to you” [1]

Fu, Barlaz, Holtrop, et al. Magn Reson Med 77(4): 1619, 2017.     M. Barlaz et al, InterSpeech, 2015.

Speeding Up Acquisitions: Parallel Imaging

• Reconstruction approaches above did not 
leverage the use of multiple, smaller 
receiver coils

• Each coil is most sensitive to tissue in its 
local area

• Reduced spatial encoding requirements 
because aliasing signal may overlap 
region where there is low sensitivity for a 
coil

• Easily incorporated into cost function for 
sensitivity encoding (SENSE)

Kaza, Klose, and Lotze. J Magn
Reson Imaging. 34:173 (2011)
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Parallel Imaging Reconstruction

• SENSE – least squares estimation with coil sensitivities 
in image space

• GRAPPA – operates in k-space. Multiplication by coil 
sensitivities in image space is convolution in k-space. So, 
find the convolution kernel in k-space to fill in missing 
samples

Pruessmann, et al. Magn reson Med 42:952 (1999). Griswold, et al. Magn Reson Med 47: 1202 (2002)

GeneRalized Autocalibrating Partially 
Parallel Acquisitions (GRAPPA)

• Learn linear relationship between kernels of sampled 
points in k-space to ”interpolate” those that were not 
sampled.

Griswold, et al. Magn Reson Med 47: 1202 (2002)

Ky

Coil1

Coil2

Coil3

Coil4

Not 
Sampled

Sampled ACS
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GeneRalized Autocalibrating Partially 
Parallel Acquisitions (GRAPPA)

• Learn linear relationship between kernels of sampled 
points in k-space to ”interpolate” those that were not 
sampled.

Griswold, et al. Magn Reson Med 47: 1202 (2002)
Not 
Sampled

Sampled

Ky

Coil1

Coil2

Coil3

Coil4

ACS

Using Autocalibration points, find the 
weights required to fit the target 
point, using adjacent samples from 
across all coils.

GeneRalized Autocalibrating Partially 
Parallel Acquisitions (GRAPPA)

• Learn linear relationship between kernels of sampled 
points in k-space to ”interpolate” those that were not 
sampled.

Griswold, et al. Magn Reson Med 47: 1202 (2002)
Not 
Sampled

Sampled

Ky

Coil1

Coil2

Coil3

Coil4

ACS

Then Slide the kernel around to fill in 
the missing k-space points

Once k-space filled in – simply 
Fourier Transform to make an image 
from EACH COIL.
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COMPUTATIONAL Challenge of Image Reconstruction
• Large matrix size

– 1.25 mm isotropic data set
• Data Size: 

– 18 GB for 6.5 min scan
• Physics: 

– 3D non-Cartesian (Spiral) sampling
– Parallel Imaging with 32 channel coil
– Magnetic Field Inhomogeneity Correction
– Motion-induced Phase Correction

• Reconstruction Time
– 8 days for reconstruction running on workstation

• Graphics Processing Units (GPU) 
– 200 times faster: <1 hour.
– Enables imaging resolutions not feasible before.

IMPATIENT MRI: 
Illinois Massively Parallel 
Acceleration Toolkit for 
Image reconstruction with 
ENhanced Throughput in 
MRI

PowerGrid –ISMRM 
2016, p. 525

GTX 1080 Ti: ~$700 (11 GB)
CORES: 3584
Boost Clock: 1582 MHz

http://mrfil.github.io/PowerGrid/

ISMRM 2016, p. 525

• Enable leveraging of GPU and MPI in MRI reconstructions
• Using ISMRM RD – raw data format standard
• Translating MATLAB routines from IRT into C++ through Armadillo
• Packaging for easy use (Docker) – coming soon
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Scale with PowerGrid
• How to use > 1 GPU?

• Message Passing 
Interface (MPI) 

• Phase Corrected SENSE 
(pcSENSE) for Diffusion 
Imaging
– 120 x 120 x 4 x 32 coils

16 GPU: 51s

Liu C, Moseley ME, Bammer R. Simultaneous 
phase correction and SENSE reconstruction for 
navigated multi-shot DWI with non-cartesian k-
space sampling. MRM. 2005;54(6):1412–1422.

K20x: 2688 cores, 732 MHz clock rate. 6 GB.

0

100

200

300

400

0 20 40 60 80R
u

nt
im

e
 (

s)
# of Single GPU (NVIDIA K20x) 

Nodes

Runtime vs. Number of GPU 
Nodes

Push for Free, Open Source, Common 
Platforms for Image Reconstruction

• Advanced reconstructions are more complex than Fourier 
Transform, but enable significantly higher resolutions and 
shorter scan times.

• Image reconstructions can be specific for the sequence, 
MRI vendor platform, image reconstruction hardware, 
and can be difficult to reimplement from paper

• There is a growing effort at creating broad-based utilities 
to enable reproducibility, distribution, scaling, and impact

• Just a few listed here…
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Hansen and Sorensen. Gadgetron. Magn Reson
Medicine 69: 1768 (2013)

https://www.ismrm.org/MR-Hub/

https://web.eecs.umich.edu/~fessler/code/index.html

Summary

• Inverse problem approach to MRI reconstruction enables 
higher resolution, improved SNR, accommodating non-
ideal physics for improved image quality

• Comes at a great deal of computational expense (MRI 
scanner does an efficient job for FFT on Cartesian data)

• Lots of open source powerful code available to translate 
techniques to clinical research workflows, leveraging 
clusters and GPU’s
– TRY THEM OUT!
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Quantitative  Reconstruction 
in  PET / CT  and  PET / MR

Georges El Fakhri, PhD, DABR
Gordon Center for Medical Imaging

Massachusetts General Hospital
Harvard Medical School

Outline

• PET 101
• Tomography in medical imaging
• Projection imaging
• Sinogram
• Reconstruction-analytic
• Backprojection artifacts
• Reconstruction-iterative
• Comparison of analytic and iterative reconstructions
• Simultaneous PET-MR
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History  of  PET  at  MGH

The birthplace of Positron Emission Imaging was at MGH in 1952
in the Center for Radiological Sciences (Ancestor of the Gordon
Center for Medical Imaging) where the first positron-imaging
device was invented by Dr Gordon Brownell and used for the
detection of brain tumors for neurosurgery by Dr Sweet (1953)

Coincidence (a) and “unbalance” (b)
scans of a patient with recurring
tumor (left) under previous
operation site [Brownell and Sweet,
1953]

What is tomography?

• Greek translation:
• tomos means slice, section
• graph means write

• 2-D representations of structures in a 
selected plane of a 3-D object

• Mathematical algorithms can be used to 
reconstruct the original 3-D object from 
the 2-D projections

• Used in medical imaging
• SPECT and PET-Emission computed 

tomography
• CT-Transmission computed tomography

http://science.howstuffworks.com/cat-scan1.htm
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History  of  PET  at  MGH

MGH is also the birthplace of filtered backprojection that is stil
widely used in PET and in CT. Dr David Chesler (Brownell Lab)
presented the first results about filtered backprojection at the
Meeting of Tomographic Imaging in Nuclear Medicine (1972).

So the PE & T of PET started at MGH!

History

A.M.Cormack

G.N.Hounsfield

J. Radon
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Why tomography over planar imaging?

10 10 10

10 20 10

10 10 10

30

40

30

Contrast (Planar) = (40 – 30)/30 = 0.33
Contrast (Tomo)  = (20 – 10)/10 = 1.00

rotating X-ra
y 

detector 

line of 
response 
L(S,D) 

ro
ta

tin
g 

X
-r

ay
 

so
ur

ce
 

S 

D 

line of 
response 
L(D,θ) 

D 

θ 

Tomography in medical imaging

* 

* 

line of response 
L(d1,d2) 

d1 

d2 

Positron emission 
tomography (PET)

X-ray computed 
tomography (CT)

Single Photon 
Emission 

Tomography (SPECT)

emission tomography

transmission tomography

emission tomography
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Unstable 
parent 
nucleus

N

N

N P

P
P P

P N
N
P

Gamma Ray Emission

Nucleus 
drops to 
lower energy 
state.

Gamma ray 
carries away 
excess 
energy

N
N

N P

PPP
P N

N

P

Gamma Ray Emission


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Nucleus 
drops to 
lower energy 
state.

Gamma ray 
carries away 
excess 
energy

N
N

N P

PPP
P N

N

P

Gamma Ray Emission



Unstable 
parent 
nucleus with 
extra proton

N
N

N P

P
P P

P N
N

P

Positron Emission and Annihilation
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N
N

N P

P
P P

P N N
N

Proton 
decays to 
neutron …

n
emitting a 
neutrino 
...

and a 
positron

e-

Positron 
combines with  
electron to 
form 
positronium ...

e+e+

which then 
rapidly 
annhilates





Two anti-
parallel 511 keV 
photons 
produced

Positron Emission and Annihilation

e
-

Dynodes have 
increasing voltage

AnodePhotocathode

Electronics

Incoming 
light ray

Dynodes

Evacuated glass tube

Photoelectron

The Photomultiplier Tube
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γ

The Scintillation 
Detector

Scintillatin
g crystal

Photomultiplier

Channel 1

Channel 2

Summed
Channel

Coincidence events

Coincidence detection in a PET camera
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A block-detector PET camera consists 
of detectors in a series of rings

Scattered
Coincidence

Random
Coincidence

True
Coincidence

Types of coincidence events
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Type of coincidence                Percentage (%)

Raw 100

Trues 38

Randoms 34

Scattered 28

Multiple 7

Example: Typical Whole Body PET

Electronic collimation and intrinsic resolution

Field of View

Detector

• Resolution depends on size of detector elements

• Resolution does not change much between the detectors
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Positron range and intrinsic resolution

N
N

N P

P
P P

P N
N

n

e-



PN

e+

Positron range

Positron range depends on 
energy of emitted positron

Positron collides with 
electrons and loses kinetic
energy

At thermal energies 
positronium can form

Isotope   Maximum Mean Range in water
positron positron FHWM 
energy  energy (mm)
(MeV) (MeV)

18F 0.64 0.25 0.10
11C 0.96 0.39 0.19
13N 1.19 0.49 0.28
15O 1.70 0.74 0.50

82Rb 3.15 1.6

Positron range and intrinsic resolution (2)
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N
um

be
r 

of
 e

ve
n

ts

Annihilation point (mm)

-2 -1 0 1 2

Approximate annihilation distribution for 18F and 82Rb in water

Positron range and intrinsic resolution (3)

82Rb

18F

Positron range and intrinsic resolution (4)

82Rb
GE-DST, OSEM

13N-ammonia
Scanditronix, FBP
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Photon non co-linearity & intrinsic resolution

e-e+

Momentum is conserved.
What happens to the momentum of the positronium?

The annihilation photons must carry it away -
so they are not exactly co-linear. 

Angular uncertainty ~ 0.5 degrees

Positional uncertainty for 1m PET scanner  ~ 2 mm

Incidence point

Interaction point

Interaction point

Incidence point

Depth of interaction and intrinsic resolution

Resolution degrades as the 
radial distance increases

PET-CT: 
4.5 mm at the center
5.5 mm at 10 cm from 
center

Most clinical 
tomographs
have spatial 
resolution in 
4-6 mm range

Positioning 
error
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General concepts of tomography acquisition

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; Elsevier, 2012.

Planar acquisition

Projection imaging
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Projection imaging

sinogram

backprojection
non filtered

General concepts of tomography acquisition

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; Elsevier, 2012.

Tomography: Many planar acquisitions
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SPECT scanners

PET scanners

Biograph (Siemens)

Gemini 
(Philips) Discovery (GE)
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CT scanners

Displaying projection data: Sinogram

A sinogram is a representation of the projection data in a 
2D matrix. Each slice will have its own 2D sinogram.

Cherry, S. R.; Sorenson, J. A.; 
Phelps, M. E. Physics in Nuclear 
Medicine; Elsevier, 2012. v v
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Tomography: sinogram

sinogram
4 projections

4 projections

90°

90°
135°

135°

45°

45°
0°

0°

8 projections

16 projections

32 projections

Sinograms are useful for detecting patient motion
No movement
original 
image

sinogra
m

reconstructed 
image

original 
image after 
movement

sinogra
m

reconstructed 
image

phantom moves halfway 
through scan
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Scanner coordinate system

• Object space (x,y) to scanner 
space (r,s):

• Explains how radioactivity at 
location (x,y) contributes to 
signal recorded at location r 
acquired at rotation angle θ

r = xcosq + ysinq
s = ycosq - xsinq

Foundation of backprojection: Radon transform

• An integral transform that takes f(x,y) and defines it as line 
integrals through f(x,y) at different offsets from the origin

R r,q( ) = f x, y( )d xcosq + ysinq - r( )
-¥

¥

ò
-¥

¥

ò dxdy

Radon transform:

b x, y( ) = R r,q( ) |
r=x cosq+ysinq dq

0

p

ò

Backprojection:
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Simple backprojection

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; Elsevier, 2012.

7 9

11 13

3 3

7 7

? ?

? ?

How does simple backprojection work?

? ?

? ?

10
8 12

10

14

6
true image first 

backprojection
3 3

7 7 14

6 7 9

11 13

next 
backprojectio

n

8 12

12 14

16 18

10 10

divide by # 
of 

projections4 4.6

5.3 6

2 4

6 8

true image
how does this 

compare?

measured 
projections

next 
backprojectio

n
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Simple backprojection with no filtering

Simple backprojection results in blurring that is mathematically explained as:

f '(x, y) = f (x, y)* (1 r) Often referred to as 1/r blurring.

Central slice theorem

Asl, M. and Sadremomtaz, A. (2013) Analytical image reconstruction methods in emission tomography. Journal of 
Biomedical Science and Engineering, 6, 100-107. doi: 10.4236/jbise.2013.61013.

• The Fourier transform of a projection of an object at angle, θ, equals a spoke through the 2D 
Fourier transform of the object that passes through the origin (fx = fy = 0) and is oriented at θ.

• To solve the 1/r blurring problem of simple backprojection we can use the central slice theorem

• Simple backprojection oversamples 
in Fourier space



7/30/2018

44

Steps for filtered backprojection (FBP)

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; Elsevier, 2012.

Steps for FBP
1. Acquire projection images
2. Compute the 1D Fourier transform 

of each profile (convert to spatial 
frequency domain)

3. Apply the filter in the frequency 
domain

4. Compute the inverse Fourier 
transform to convert back to spatial 
domain

5. Perform backprojection

Filtered Backprojection: Filters

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; 
Elsevier, 2012.

• Filtering is used to remove the 1/r 
blurring found in simple 
backprojection

• Ramp is simplest

• Others are used to remove noise 
artifacts at high frequencies

• Shepp-Logan
• Hann

• Filtering is performed in spatial 
frequency space following a Fourier 
transform
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Tomography: filtering

No filtering ramp HanningInitial Image

sinogram 32 projections

f x, y( ) = dq dw w P w( )e2p iwr

0

¥òé
ëê

ù
ûú0

pò
r=xcosq+ysinq

Filtered Backprojection: Equation form

Steps for FBP
1. Acquire projection images
2. Compute the 1D Fourier transform of each profile (convert to frequency domain)
3. Apply the filter in the frequency domain
4. Compute the inverse Fourier transform to convert back to spatial domain
5. Perform backprojection
6. Then apply this procedure and sum over all projections

p r,q( )
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Tomography : reconstruction of 1 slice

non filtering

sinogram

Ramp filter Hanning filter

backprojections

Factors affecting image quality: Noise

original no noise

0.5*Poisson Poisson
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Factors affecting image quality: Acquisition sampling

Low projection sampling resolution can cause blurring and aliasing artifacts
Δr = 0.1 cm Δr = 0.2 cm

Δr = 0.4 cm Δr = 0.8 cm

Factors affecting image quality: Reconstruction filter

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; 
Elsevier, 2012.

• Reduction of cutoff frequency:
• Increase blurring
• Reduction in noise
• Reduction in image detail

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; 
Elsevier, 2012.
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Factors affecting image quality: Angular sampling

• Reduction in 
acquired projection 
angles:

• Decrease acquisition 
time

• Increase spoke-like 
artifacts

3015

60 90

Factors affecting image quality: Angular sampling range

• Full 180° angular sampling 
is needed

45° 90°

135° 180°
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Factors affecting image quality: Full object coverage

• Incomplete coverage of the object during some or parts of the scan 
can lead to artifacts

Factors affecting image quality: Missing detector

• Instrumentation failure can cause artifacts due to missing data
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Steps of Iterative reconstruction of 1 slice

Backprojection

Simulated Projections

Actual
Projections

Compare

Use to improve 
current 
estimate

Current Estimate

Error

Courtesy of Jerold W. Wallis, M.D.

Maximum likelihood expectation maximization 
(MLEM): example

? ?

? ?

10
7 12

9

14

5
true image

guess
5 5

5 5 10

10
5

10
= 0.5

14

10
=1.4

2.5 2.5

7 7

new 
image

9.5 9.5

7

9.5
= 0.74 12

9.5
=1.26

new 
image

1.85 3.02

5.18 8.82

8.2 10.7
10

8.2
=1.22

9

10.7
= 0.84

new 
image

1.55 3.68

6.32 7.41

1 4

6 8

true image
getting close to 

true image

measured 
projections

It’s an iterative procedure
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Maximum likelihood expectation maximization 
(MLEM): Equation form

f
i
(n+1) = f

i
(n) × 1

a
ijj

å
g

j

a
kj
f
k
(n)

k
å

a
ij

j

å

The current image estimation: f
i
(n)

The probability that activity emitted in voxel i is detected by detector j: a
ij

Actual measured projection: g j

Current forward projection estimate: a
kj
f
k
(n)

k
å

Therefore, the ratio of the measured projection to the current projection is: 
g

j

a
kj
f
k
(n)

k
å

g
j

a
kj
f
k
(n)

k
å

a
ij

j

åCurrent backprojection of this ratio is: 

Which then acts upon the current estimate             to form our new estimatef
i
(n) f

i
(n+1)

aij can contain physical information such as effects of spatial resolution, 
scatter, attenuation and other characteristics of the detection process

Steps of maximum likelihood expectation 
maximization (MLEM): equation form

f
i
(n+1) = f

i
(n) × 1

a
ijj

å
g

j

a
kj
f
k
(n)

k
å

a
ij

j

å
1. The first         is a guess and is typically uniform.f

i
(0)

2. Forward project: Simulate the projection measurement 
from the previous estimate

a
kj
f
k
(n)

k
å

3. Compare the forward projected estimate to the actual 
measured projection

g
j

a
kj
f
k
(n)

k
å

4. Next, update (improve) our estimated image 
using the current information

f
i
(n+1) = f

i
(n ) × 1

a
ijj

å
g

j

a
kj
f
k
(n)

k
å

a
ij

j

å

5. Repeat this until convergence is reached!
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Maximum-likelihood, expectation maximization algorithm 
(MLEM)

- Correct for Poisson noise

- Positivity guaranteed

- Slow compared to FBP

- Acceleration of the process by the “Ordered Subsets (OSEM) approach”:
projections are divided into subsets, which are updated at each iteration

- Noise at high iteration numbers (approximation of a continuous function by
a pixelated one)

- Noise can be reduced greatly by convolving the noisy image estimate with
a gaussian kernel (regularization)

- How to define when to stop?

How do we know when to stop?
• Low frequencies are 

reconstructed first
• As iterations increase 

image detail is 
recovered and so is 
noise

• Too few iterations: no 
image detail and lack 
of convergence

• Too many iterations: 
image is noisy

• Solution: assure 
proper convergence 
and remove noise 
with a gaussian filter

Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine; Elsevier, 2012.
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Ordered subset expectation maximization

• Solution to improve MLEM: Ordered-subset 
expectation maximization (OSEM)

• At each step, project and backproject at only some 
angles (i.e. a subset)

• Perform the steps in an ordered way to include all 
angles

• Data start to converge even before the 1st iteration 
is complete

• Convergence achieved in 3 - 10 iterations
• Much quicker than MLEM

Iterative reconstruction can model the 
reality of emission tomography

• Attenuation
• Positron range
• Noncollinearity of photons

(PET)
• Deadtime
• Scatter coincidences
• Random coincidences
• Physics of crystal: size,

intercrystal scatter and
penetration

• Noise

Scattered 
Coincidence 

Random 
Coincidence 

True 
Coincidence 

Corrected for attenuation Not corrected for attenuation

crystal 
penetration
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Iterative vs. FBP

• Advantages of iterative methods:
• The results must be better because the correct physics is 

included in the reconstruction: The reconstruction 
algorithm “knows” the physics

• Attenuation correction
• Reduction of streak artifact
• Overall quality

• Disadvantages of iterative methods (MLEM)
• Slow convergence to the desired solution (e.g. tens -

hundreds of iterations)
• Computationally demanding - number of iterations and 

inclusion of the physics

OSEM vs FBP

• Filtered Back-Projection
• Fast
• Robust
• Subject to noise & streaks

• OSEM
• Almost as fast
• Handles noise & streaks
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Analytic vs iterative reconstructions
O

S
E

M
F

B
P

FDG PET

Analytic vs iterative reconstructions
FBP, Han filter

OSEM, 2 iteration 
28 subsets
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Analytic vs iterative reconstructions

Coronal slices

2D AWOSEM RVR 2D FBPATT RVR

3D AWOSEM RVR 3D FBPATT RVR

Analytic vs iterative reconstructions
FBP, 10 min emission
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Analytic vs iterative reconstructions
OSEM, 10 min emission

Integrated Whole-Body PET-MR

32 channel 
3T Verio  MR

Simultaneous PET – MR

25 cm axial coverage

PET - MR

PET - MR

CT

60 cm

PET

G. El Fakhri, Ph.D.
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Methods: Motion Corrected OSEM

• List-mode MLEM reconstruction algorithm with motion modeled in the system matrix: 

Attenuation map in the reference frame Attenuation maps in the deformed frames

Transformation using 
measured motion fields 
from tagged MR

• Attenuation correction using deformed attenuation maps at each frame:

Ouyang J., Petibon Y., El Fakhri G. 

• Motion Correction with Primate in simultaneous PET-MR

Gated tagged MR Gated PET

Primate Results: Acquisition

Chun et al. J. Nucl. Med. 2012
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Uncorrected Gated

MR motion 
corrected

Reference 
gated 30 min

Nonhuman Primate Results (2/3)

Chun S.Y., Reese T., Guerin B., Catana C., Zhu X., Alpert N., El Fakhri G. 
Tagged MR-based Motion Correction in Simultaneous PET-MR. JNM 2012; 

Liver patient study (1/3)

Cine MRI 
(TrueFISP)

Respiratory Gated 
PET 

Respiratory motion amplitude in the dome of the liver (~0.7-
1.5cm).

Petibon,  Huang, Ouyang and El Fakhri.  
Relative role of MR-based motion in WB PET-MR. Med. Phys., 2014 41
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Initial results in hepatic lesions (2)

• Estimated Motion via B-spline non-rigid image registration

Reference : End-inspiration (Isrc) End-exhalation (Itar)

( )ˆ arg min , ( )SSD tar srcT I TI R T=  +é ùë û

G. El Fakhri, Ph.D.

Liver patient study (3/3)

PSF-OP-OSEM

MC-OP-OSEM MC-PSF-OP-OSEM

T1w OP-OSEM

Petibon,  Huang, Ouyangand El Fakhri. 
Role of MR-based motion and PSF corrections in WB PET-MR. Med. Phys., 2014
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Measure Motion Fields and Track Motion Phases

PET 
imaging

Measure motion fields Track motion & acquire PET/MRI data 

Cardiac motion 
phase

R
e

sp
ir

a
to

ry
 m

o
ti

o
n

 
p

h
a

se
Motion 

correction for 
PET 

reconstruction

121

Summary

• PET 101
• Tomography in medical imaging
• Projection imaging
• Sinogram
• Reconstruction-analytic
• Backprojection artifacts
• Reconstruction-iterative
• Comparison of analytic and iterative reconstructions
• Simultaneous PET-MR
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Quantitative  Reconstruction 
in  PET / CT  and  PET / MR

THANK YOU!

J. Webster Stayman

Advanced Imaging Algorithms and Instrumentation Lab (aiai.jhu.edu)
Johns Hopkins University

August 30, 2018
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CT Hardware Basics

(image Credit) https://www.youtube.com/watch?v=bg0iNhw2ARw

X-ray Tube

Detector

X-ray Tube Physics and Dose Reduction

Number of photons  mA

X-ray 
Photons

mA

kV
p

Nominal Scan Protocol

Reduced Exposure Scans

(Fully Sampled, Nominal mA)

or

(Sparse Sampled)(Reduced mA)
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Noise in X-ray Projection Data

100 200 300 400 500 600 700

100

200

300

400

500

600

700 -0.08

-0.06

-0.04

-0.02

0

0.02

0.04
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0
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10000

X-ray Projection Data Relative Noise

Discrete-Discrete
Parameterization

System matrix

mj

yi

mj-1 mj+1 mj+2

Modeling Projection Data

m1 m2 m3 m4 m5 m6 m7 m8 m9m10m11
m12......

mp

...

...

y1

y2

y3

y4

y5

Image Volume

𝑦௜ഥ = 𝐼଴exp − ෍ 𝑎௜௝𝜇௝

௣

௝ୀଵ

Projection Data

𝐀 =

𝑎ଵଵ ⋯ 𝑎ଵ௝ ⋯ 𝑎ଵ௣

⋮ ⋱ ⋮  ⋮
𝑎௜ଵ ⋯ 𝑎௜௝ ⋯ 𝑎௜௣

⋮  ⋮ ⋱ ⋮
𝑎௡ଵ ⋯ 𝑎௡௝ ⋯ 𝑎௡௣
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Mean measurements as a function of parameters

Mathematical Forward Model

Projection Backprojection

𝑦ത 𝜇 = 𝐼଴exp −𝐀𝜇

m  = ?

pdfs

realizations

3 Random Variables

Different std dev (s1,s2,s3)

Best way to estimate m?

x1

x2

x3

How to deal with unequal measurement noise
(Simple Estimation Problem)
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Find the parameter values most likely to be responsible for the observed data.

Likelihood Function

Maximum Likelihood Objective Function

Maximum Likelihood Estimation

m  = ?

x1

x2

x3

Log transformed data case (e.g.                )

Likelihood-based Objective

Solve for m

Maximum Likelihood Estimation for CT

𝑙(̅𝜇) = 𝑨𝜇

𝑙 = − log
𝑦

𝐼଴

𝑃௟೔
= ଵ

ଶగఙ೔
మ 

ୣ୶୮ ି
ଵ

ଶఙ೔
మ ௟೔ି௟೔ഥ ఓ

మ

log 𝐿 𝑦; 𝜇 = ି ∑
ଵ
ଶ

୪୭୥ ଶగ ೔
మಿ

೔ ି∑
ଵ

ଶఙ೔
మ ௟೔ି 𝐀ఓ ೔

మಿ
೔

≅ − 𝑙 − 𝐀𝜇 ்𝐃
1

𝜎௜
ଶ 𝑙 − 𝐀𝜇 =  − 𝑙 − 𝐀𝜇 ஊషభ

ଶ

𝜇̂ = argmax log 𝐿 𝑦; 𝜇 = 𝐀்𝐃 ଵ

ఙ೔
మ 𝐀

ିଵ

𝐀்𝐃 ଵ

ఙ೔
మ 𝑙
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Statistical vs Nonstatistical Reconstruction
Ground Truth Nonstatistical Method 

(FBP, ART, etc.)
Statistical Method 

(Maximum-Likelihood)

Statistical methods weigh important of individual data points
BUT noise control requires additional information

Additional Information through Regularization

Integrating information via a change in the objective function

Choices of regularization 𝑅 𝜇

Local smoothness
Edge-preservation
Prior images
Patches/dictionaries/learned regularization

𝜇̂ = argmax log 𝐿 𝑦; 𝜇 − 𝛽𝑅 𝜇

Penalized-Likelihood Estimation
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Pairwise Penalty

Penalty Choices

( ) ( )jk j k
j k N

R wm  m m


= -åå

Regularization of Local Image Properties

𝜓 𝑡 = 𝑡ଶ
Quadratic Truncated Quadratic P-normLange

FBP vs (Quadratic) Penalized-Likelihood
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Nonquadratic 
Penalty (Lange)

Knowledge of anatomy
Target locations
Previous imaging studies

Post-treatment assessments
Monitoring disease progression
Dynamic studies

**Image credit: Y. T. and F. W. Poon, ”Imaging of solitary pulmonary 
nodule—

a clinical review,” Quant. Im. in Med. and Surg. 3(6), Dec. 2013  

Initial Scan Follow-up Scan (+6 months)

Regularization using Prior Images

Low-
Fidelity
Data

Traditional Model-Based
Reconstruction

Prior-Image-Based
Reconstruction

Current
Anatomy

Prior
Image

Prior Image Registration Penalized-Likelihood 
Estimation (PIRPLE)

Prior Image Registration
Penalty Term

𝜇̂, 𝜆መ = argmax log 𝐿 𝑦; 𝜇 − 𝛽ோ𝑅 𝜇

− 𝛽௉ 𝜇 − 𝐖 𝜆 𝜇௉ ଵ
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First scan 
(Baseline Exam)

Second scan 
(Follow-up Exam)

Petroleum Jelly 
Injection

(Tumor Growth)

Fluoroscopy

Biopsy 
Needle

Spiral 
Syringe

SubtractionPatient-specific Prior 
Image

X-ray 
Source

FPD Cadaver

Rotation 
Stage

30cm 120cm

Current Anatomy Difference From Prior Image

Follow-up scans:

0.1 mAs/frame

Fully sampled (360 frames/360o)

Sparse sampling (various/200o)

Prior Image Regularization Experiments

P
LE

d
P

IR
P

L
E

PL

dPIRPLE

20 views
(2 mAs)

10 views
(1 mAs)

40 views
(4 mAs)

100 views
(10 mAs)

200 views
(20 mAs)

H. Dang, A. S. Wang, M. S. Sussman, J. 
H. Siewerdsen, J. W. Stayman, "dPIRPLE: 
A joint estimation framework for 
deformable registration and penalized-
likelihood CT image reconstruction using 
prior images," Physics in Medicine and 
Biology, 59(17) 4799-826 (September 
2014). PMID: 25097144

Dose reduction in Lung Nodule Surveillance
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FDK PL PIBR

On-board CBCT
Reconstructions

Planning
MDCT

H. Zhang, G. J. Gang, J. Lee. J. Wong, J. W. Stayman, “Integration of prior CT into CBCT reconstruction for improved image quality via 
reconstruction of difference: first patient studies,” Proc. SPIE Medical Imaging Orlando, FL, March 2017, 10132, 1013211-1-6.

Prior Images for Image Quality Improvement

Regularization using Patches/Dictionaries

𝜇̂, 𝜆መ = argmax log 𝐿 𝑦; 𝜇

                −𝛽 ෍ 𝐄௣𝜇 − 𝐃𝜆௣ ଶ

ଶ
 

௣

+ ෍ 𝜈௣ 𝜆௣ ଴

 

௣

General/learned knowledge of image features
Need a dictionary of features/patches
Sparse representations, 

linear combinations of few patches

Objective Function

𝐄௣𝜇

⋮

⋮
× 0.1 +

𝐃𝜆௣

× 0 +

× 0.7 +

× 0 +

× 0 +

Images adapted from: Q Xu, H Yu, X Mou, L Zhang, J Hsieh, G Wang, “Low-dose x-ray CT reconstruction via dictionary learning,” IEEE Trans. 
Medical Imaging, 31(9), September 2012.
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FBP Total Variation Dictionary Methods

Dictionary Methods & Few View Reconstructions

Image credits: Q Xu, H Yu, X Mou, L Zhang, J Hsieh, G Wang, “Low-dose x-ray CT reconstruction via dictionary learning,” IEEE Trans. Medical 
Imaging, 31(9), September 2012.

Additional Information in the Forward Model

Forward model has many simplifications in physics… 
Model ignores

Scatter
Spectral effects
Focal spot blur
Detector blur

Object model may have constraints
Nonnegativity
Known element/components in the field-of-view

𝑦ത 𝜇 = 𝐼଴exp −𝐀𝜇
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Implants
Susceptible to metal artifacts
Strongest near the device
Region-of-interest is near implant

Include a component model in explicitly in the object model

J. W. Stayman, Y. Otake, J. L. Prince, J. H. Siewerdsen, "Model-based Tomographic Reconstruction of Objects containing Known Components," 
IEEE Trans. Medical Imaging, 31(10), 1837-1848 (October 2012). PMID: 22614574

Modeling Known Components in the Object

𝜇 𝜇ୟ୬ୟ୲୭୫୷, 𝜆 = 𝐃 𝐖 𝜆 𝑚 𝜇ୟ୬ୟ୲୭୫୷ + 𝐖 𝜆 𝜇୧୫୮୪ୟ୬୲

Known Component Reconstruction Iterations
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FBP Penalized-Likelihood

Known-ComponentsFBP+MAR

S. Xu, A. Uneri, A. J. Khanna, J. H. Siewerdsen, J. W. Stayman, “Polyenergetic known-component CT reconstruction with unknown material 
compositions and unknown x-ray spectra,” Physics in Medicine and Biology, 62(8), 3352-74 (April 2017) 

Reconstructions of an Implanted Cadaver

Improving the Physical Model (Focal Spot Blur)

𝑦௜ഥ = ෍ 𝑏௜௞

௄

௞ୀଵ

exp − ෍ 𝑎௞௝𝜇௝

௣

௝ୀଵ
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Improved Physical Modeling (Focal Spot)

FBP

PL
Standard 

Model

PL
Focal Spot 

Model

Truth

S. Tilley II, W. Zbijewski, and J. W. Stayman, 
“High-Fidelity Modeling of Shift-Variant Focal-
Spot Blur for High-Resolution CT,” in The 14th 
International Meeting on Fully Three-
Dimensional Image Reconstruction in 
Radiology and Nuclear Medicine, 2017, pp. 
752–759.

Advanced Reconstruction Aims
Dose reduction, improved image quality

CT Forward Model
Nonlinear, but often linearized
Measurement statistics are important (SNR varies widely)
Advanced physical modeling permits image quality improvements

CT Regularization Strategies
Standard smoothness and edge-preservation
Use of prior images (e.g., sequential studies)
Generalized dictionary methods including machine learning

Other Objective Function Modifications
Additional constraints on the object (e.g., known components)

CT Reconstruction Summary
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