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CT Hardware Basics

(image Credit) https://www.youtube.com/watch?v=bgOiNhw2ARw

X-ray Tube Physics and Dose Reduction
Nominal Scan Protocol
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Noise in X-ray Projection Data

X-ray Projection Data Relative Noise

Modeling Projection Data
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Parameterization

System matrix
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Mathematical Forward Model

Mean measurements as a function of parameters
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to deal with unequal measurement noise
(Simple Estimation Problem)

3 Random Variables
Different std dev (o;,0,,03)

Best way to estimate .?
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Maximum Likelihood Estimation
Find the parameter values most likely to be responsible for the observed data.
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Maximum Likelihood Objective Function
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Maximum Likelihood Estimation for CT

Log transformed data case (e.g. | = —log 1)—7|)
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Statistical vs Nonstatistical Reconstruction

Ground Truth Nonstatistical Method Statistical Method
(Maximum-Likelihood)

Statistical methods weigh important of individual data points
BUT noise control requires additional information

Additional Information through Regularization

Integrating information via a change in the objective function

fi = argmaxlog L(y; u) — BR (1)

Penalized-Likelihood Estimation

Choices of regularization R(u)

Local smoothness

Edge-preservation

Prior images

Patches/dictionaries/learned regularization

Regularization of Local Image Properties

Pairwise Penalty

R(u)=2 > wyw (1)
T keN

Penalty Choices
Quadratic Truncated Qua
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FBP vs (Quadratic) Penalized-Likelihood
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Regularization using Prior Images

Knowledge of anatomy Prior Image Registration Penalized-Likelihood
Target locations Estimation (PIRPLE)
Previous imaging studies
Post-treatment nents
Monitoring disease progression
Dynamic studies

Prior Prior-Image-Based
Image Reconstruction
|
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{[A, 1] = argmaxlog L(y; u) — frR(1)
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Prior Image Regularization Experiments

First scan Second scan
(Baselne Exam) (Folowsup Exam)

Dose reduction in Lung Nodule Surveillance

e |

Prior Images for Image Quality Improvement

Planning On-board CBCT
MDCT Reconstructions




Regularization using Patches/Dictionaries

General/learned knowledge of image features  Objective Function
Need a dictionary of features/patches Iu gmax log L(y; 1)
Sparse representations,

linear combinations of few patches

g." IEEE Trans

Dictionary Methods & Few View Reconstructions

Total Variation Dictionary Methods

learning,” IEEE Tray

Additional Information in the Forward Model

p(—Aw)

Forward model has many simplifications in physics...
Model ignores

Scatter
Spectral effects
Focal spot blur
Detector blur

Object model may have constraints
Nonnegativity

Known element/components in the field-of-view
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Object

Implants
Susceptible to metal artifacts
Strongest near the device
Region-of-interest is near implant

Include a component model in explicitly in the object model

#(Hanatomy

Reconstructions of an Implanted Cadaver

FBP enalized-Likelihood
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Improving the Physical Model (Focal Spot Blur)
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CT Reconstruction Summary

Advanced Reconstruction Aims
Dose reduction, improved image quality
CT Forward Model
Nonlinear, but often linearized
Measurement statistics are important (SNR varies widely)
Advanced physical modeling permits image quality improvements

Regularization Strategies

Standard smoothness and edge-preservation

Use of prior images (e.g., sequential studies)

Generalized dictionary methods including machine learning

Other Objective Function Modifications
Additional constraints on the object (e.g., known components)
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