

Ke Li, PhD

Assistant Professor Department of Medical Physics and Department of Radiology University of Wisconsin-Madison

edical Physics & Radiology Ŵ

Acknowledgements

- Department of Medical Physics Ran Zhang, PhD
 John Garrett, PhD
- Guang-Hong Chen, PhD
- Department of Radiology Amy Fowler, MD, PhD
 Frederick Kelcz, MD, PHD
- Department of Surgery Lee G Wilke, MD

۲

æ

- Department of Pathology Andreas Friedl, PhD
- Hologic, Inc. Zhenxue Jin, PhD Baorui Ren, PhD
- Funding Supports DOD Breakthrough Award W81XWH-16-1-0031
- NIH R01EB020521

Outline

- Motivation of developing the prototype multi-contrast breast imaging system
- Challenges and technical considerations in system design Compact geometry
 Limited spatial coverage of gratings
 Radiation dose and patient safety
- Technical solutions to these challenges; construction of the prototype system
- Performance of the prototype system Phantom resultsFresh mastectomy specimen results
- Summary

Dep Med	en ha	den nisn	ce o n: C	ef Is om	nag pto	e C n Si	ont catt	ras eri	t on ng	X-Ray Interaction
	ρ ₀ []	e= 1 [cm ³]							For Compton Scattering (CS), its interaction cross-section σ_{cs} is * $\sigma_{cs} \begin{pmatrix} r \\ x \end{pmatrix} = \sigma_{cs}^c \rho_c \begin{pmatrix} r \\ x \end{pmatrix}$
	2	•	8	 ρ _{e=_} 1	2 [cm ³	ē	•	8	8	The corresponding signal in a log- normalized x-ray projection measurement is
	0		8	1	6	0	8	0	8	$Path a \frac{\frac{Signal_{cs}}{s_{cs}} - Signal_{cs}^{*}}{\frac{Signal_{cs}}{s_{cs}} - Signal_{cs}^{*}}}$
•		0	0	0	0		0	0		Path b $= \frac{\sigma_{cs}'(8 \times 1 + 2 \times 1.1) - 10 \times 1}{\sigma_{cs}'(8 \times 1 + 2 \times 1.1) - 10 \times 1}$ $= 2\%$
	м	icroscop	ic vièw of	Tmåge (Jbject: A	sea of E	ectrons			

Potential Application of X-Ray Phase Contrast Imaging in Breast Cancer Imaging

- Refined visualization of tumor boundaries
- Provide advanced insight into tumor morphology or collagen architecture ^[1-3]
- Improve the visualization of subtle density variations, spiculation, or abnormal fibrous structures in highly dense breasts ^[4-5]
- Synchrotron-based study resulted in specificity and sensitivity values of 94% and 81% for breast cancer diagnosis, compared with 52% and 69% for conventional mammography ⁽⁶⁾

Ŵ

ø

mg th

[2] Friedler et al., PMB 49, 175 (2004) [3] Stampanoni et al., Invest. Radiol. 46, 801 (2011) [4] Morita et al., Lect Notes Comput Sci 5116, 228 (200 [5] Hauser et al., Rvest. Radiol. 49, 131 (2014) [6] Castelli et al., Radiology 259, 684 (2011)

Motivation of Developing the Prototype System

Limitations of synchrotron- and benchtop-based studies

- Improved image quality can be partially attributed to improved x-ray beam characteristics at the synchrotron, such as monochromaticity and finite beam size, rather than the phase contrast mechanism itself^[1]
- Studies that suggest added clinical value have so far largely been performed at dose levels and data acquisition time far exceeding those deemed clinically acceptable ^[2,3]

[1] Auweter et al., Br. J. Radiol. 87, 1034 (2014) [2] Grandi et al., Z. Med. Phys. 23, 212 (2013) [3] Stampatoni et al., Invest. Radiol. 46, 801 (2011)

Motivation of Developing the Prototype System

ŵ

- Limitations of synchrotron- and benchtop-based studies
- Did not consider the compactness requirement of clinical systems

 - For these noncompact systems: Longer wave propagation length -> better spatial coherence Higher Tablot order -> higher phase contrast sensitivity Quasi-parallel geometry -> negligible beam divergence
- Did not include mechanical vibration
- Did not include gravitational sag
- Incompatible with in vivo human subject studies

Motivation of Developing a Prototype System

- Majority of previous works used formalin-fixed tissue specimens - Formalin fixation preserves cellular morphology but may modify other tissue properties
 - Dehydration

 - Change of tissue density Loss of x-ray opacity Demineralization (a particular problem for microcalcification imaging)

 - Content and Integrity of nucleic acids Change of acidity and basicity
- True clinical utility of multi-contrast imaging should be evaluated in vivo or using <u>fresh</u> breast tissues

M. Srinivasan et al., Am J Pathol. 161, 1961 (2002)
 R. Thavarajah et al., J Oral Maxillofac Pathol. 16, 400 (2012)
 A. Fonseca et al., Dentomaxillofac Radiol. 37, 137 (2008)

Overall Goal of the Project

- The purpose of this work was to develop a multi-contrast breast imaging prototype system based on a clinical FFDM system:
- Compatible with clinical requirements and conditions
- Compatible with in vivo human subject imaging
- True clinical utility of phase contrast and dark field imaging can be evaluated

Outline

- Challenges and technical considerations in system design
 Compact geometry
 Limited spatial coverage of gratings
 Radiation dose and patient safety

- Technical solutions to these challenges; construction of the prototype system
- Phantom results
 Fresh mastectomy specimen results

Other Consideration: Patient Safety

- System should withstand compression force up to 200 N (45 lbs)*
- Potential safety hazard: sharp components of the grating interferometer that may contact the patient
- Radiation dose consideration
 e.g., MGD of the "Standard Breast" ≤ 3 mGy*

* The Mammography Quality Standards Act Final Regulations: Preparing for MQSA Inspection Final Guidance for Industry and FDA, November 2001

ø

Outline

- Compact geometry
 Limited spatial coverage of gratings
 Radiation dose and patient safety
- Technical solutions to these challenges; construction of the prototype system

Parameters of the Grating Interferometer System

pecifica	ations		Geometric Para	Geometric Parameters		
Gratings				Distance		
G0	G1	G2	Source to G0	5 cm		
20.7	4.3	2.4	Source to object	62 cm		
58	50	50	G0 to G1	60 cm		
12	2.15	1.2	G1 to G2	5 cm		
60	11.2	50	Object to detector	8 cm		
		42/	Source to detector	70 cm		
Au	Ni	Au				
Diameter (cm) 3 10 5		The feature size and aspect rat	tio are within the			
	G0 20.7 58 12 60 5 Au 3	Gratings G0 G1 20.7 4.3 58 50 12 2.15 60 11.2 5 5 Au Ni 3 10	Gratings Gratings 20.7 4.3 2.4 58 50 50 12 2.15 1.2 60 11.2 50 5 5 42 Au Ni Au 3 10 5	Gratings Geometric Pare G0 G1 G2 20.7 4.3 2.4 Source to G0 Source to G0 12 2.15 G1 60 11.2 50 5 5 42 Au Ni Au 3 10 5		

۲

With flat grating

R. Zhang et al. to-be-s

.

.

Outline

- Compact geometry
 Limited spatial coverage of gratings
 Radiation dose and patient safety
- Technical solutions to these challenges; construction of the prototype system
- Performance of the prototype system
- Phantom results
 Fresh mastectomy specimen results

Multi-Contrast Imaging: Bovine Tissue Specimen

()

- S.
- Fresh bovine specimen
- Image object: fresh bovine specimen • The specimen is mostly composed of the longissimus dorsi muscle
- Also contains complexus and spinalis muscles
 Thickness: 4 cm
- Contrast agents
- Agent A: iodine (for absorption contrast)
- Agent B: microbubbles (for dark field contrast)*
 Agent C: PMMA spheres (for differential phase contrast)

- UW Health Science IRB #2016-0814
- Eligibility
- Female patients of all races and ethnic backgrounds
- At least 18 years of age
- Undergoing unilateral or bilateral mastectomy
- With known biopsy-proven breast cancer
 Amendment #CT014: include high-risk patients that are undergoing prophylactic mastectomy
- The fresh mastectomy specimen must arrive to Surgical Pathology no later than 40 minutes post-resection

Summary

The quest for understanding the true medical utility of multicontrast breast imaging under clinically-relevant conditions motivated the development of the prototype system

0

ø

- The prototype was built upon clinical full field digital mammography system with minimal modification to the data acquisition hardware. Therefore, it automatically meets the following clinical requirements and conditions:
- Geometric compactness
- Tube power and image acquisition speed
- Vertical geometrySystem and building vibrations

Summary

- Major technical challenges in developing the prototype system and
 - Smaller grating pitch introduced by compact geometry
 - Limited FOV introduced by finite grating area and beam divergence
 - Scatter radiation and sharp devices introduced by grating interferometer ast
- Phantom results
- Multi-contrast imaging capability with satisfactory fringe visibility and repeatability Initial fresh mastectomy specimen results
- Compatibility with clinical mastectomy workflow
 Supplementary information to absorption mammography; further image interpretation by breast radiologists is needed

