

#### T MAYO CLINIC

#### Overview

- Why MECT beyond DECT
- Techniques for EID-based MECT
  - Multi-source MECT
  - Single-source MECT with spatial-spectral filters
  - Dual-source MECT with split filter
- Summary and discussions





# MAYO CLINIC

#### Why MECT beyond DECT – Multi-contrast Imaging

lodine and gadolinium

 Single scan for multi-phase liver and kidney imaging – potential to reduce radiation dose (Muenzel et al, 2016; Rolf et al, 2017) ine and bismuth lodi

Small bowel imaging – separate lumen and bowel wall (Qu et al, 2010, Morgan et al, 2012)

lodine and tungsten

multi-phase in one single scan – potential to reduce radiation dose (Mongan et al, 2012)

- Cardiovascular characterize macrophage burden, calcification, and stenosis of atherosclerotic plaques (Cormode et al 2010; Baturin et al, 2012)
- CTA detect endoleaks at arterial phase (I) and at venous/delayed phase (Gd) following endovascular aortic repair (Dangelmaier et al, 2018)



DECT for 3-material quantification

Kelcz et al, Med Phys, 1979



enous)/Bismuth(oral) Mongan et al, Radiology, 2012



| MAYO CLINIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| MECT platforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| Energy integrating detector(EID)-based<br>X-ray photons<br>Reflective material<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG2025<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205<br>CG205 | Photon counting detector(PCD)-based |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |

# T MAYO CLINIC

# Benefits of PCD-CT Platform

- Improve SNR (optimal energy weighting)
- Improve low-dose performance (reduced electronic noise)
- Improve spatial resolution (direct conversion)
- Enable MECT (energy resolving and multiple energy thresholds)

# MAYO CLINIC

# Limitations of Current PCD-CT Technology

- High cost due to lack of mass production
- Spectrum distortion due to non-ideal detectors (charge sharing, K-escape, pulse pileup, etc.)



# As a result of spectra distortion, no advantage has been shown compared to EID-based DECT for dual-energy tasks.

#### THE MAYO CLINIC

#### **EID-based MECT**

- Multi-source MECT<sup>1</sup>
- Single-source MECT with spatial-spectral filters<sup>2</sup>
- Dual-source MECT with split filter<sup>3</sup>

<sup>16</sup>. Dafni and D. Ruimi, "Multiple source CT scanner," U. S. Patent 5066422, 1999. <sup>21</sup>, W. Stayman and S. Tilley II, "Model-based Multi-material Decomposition using Spatial-Spectral CT Filters," 5<sup>th</sup> CT meeting, 2018. <sup>21</sup> Vu et al, "JoabSource Multi-Energy CT with Triple or Quadruple X-ray Beams", SPIE Medical Imaging Conference, 2016 <sup>41</sup> Vu et al, "JoabSource Multi-Energy CT with Triple or Quadruple X-ray Beams", J Med Imaging, 2018 <sup>41</sup> Vu et al, "JoabSource Multi-Energy CT with Triple or Quadruple X-ray Beams", J Med Imaging, 2018 <sup>41</sup> Pu et al, "JoabSource Multi-Energy CT with Triple or Quadruple X-ray Beams", J Med Imaging, 2018 <sup>41</sup> Chae RX et al, Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT, PMB, 2017 <sup>11</sup>



E. Dafni and D. Ruimi, "Multiple source CT scanner," U.S. Patent 5966422, 1999 (Picker) V. B. Neculaes, et al, "Multisource X-ray and CT: lessons learned and future outlook," IEEE Access, Jan. 13, 2015.

# MAYO CLINIC

# Multi-source MECT

- Advantages
  - Flexible to adjust tube voltage and spectrum
  - Flexible to adjust dose distribution
- Challenges
  - Cost
  - Limited space in a CT gantry
  - Limited field of view (FOV)
  - Cross scatter

# MANO CLINIC Single-source MECT with spatial-spectral filters • X-ray beam is modulated using a repeating pattern of filter materials, allowing for collection of many different spectral channels within one scan • Model based material decomposition • Spatial-Spectral Filter • Spat







# MAYO CLINIC

# Single-source MECT with spatial-spectral filters

- Advantages:
  - Cost effective
  - One single acquisition, no need to switch filters
  - Spectra separation appears to be reasonable
- Challenges:
  - Alignment of each beamlet (after each filter) with corresponding detector pixels
  - Penumbra region between adjacent filters
  - Sampling pattern of filters



















| MAYO CLINIC                            |                              |                 |                 |  |
|----------------------------------------|------------------------------|-----------------|-----------------|--|
| Material decomposition: Quadruple-beam |                              |                 |                 |  |
|                                        |                              |                 |                 |  |
|                                        |                              |                 |                 |  |
| (a) 90 kV + Gd                         | (b) 90 kV + Sn               | (c) 150 kV + Au | (d) 150 kV + Sn |  |
| (e) lodine                             | e<br>6<br>2<br>0<br>(f) Bism | nuth            | (g) Water       |  |



| T MAYO CLINIC                                                         |                                                    |                                            |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|--|--|--|
| Preliminary Experiment before Implementation                          |                                                    |                                            |  |  |  |
|                                                                       |                                                    |                                            |  |  |  |
|                                                                       | EID-based MECT (N=3)                               | PCD-CT (N=4)                               |  |  |  |
| CT Scanner Platform                                                   | Definition Edge                                    | РССТ                                       |  |  |  |
| kV                                                                    | 80 + AuSn120                                       | 140: [25 50 75 90 keV]                     |  |  |  |
| Mean Energies (keV)                                                   | [52.2 67.5 85.3]                                   | [64.6 69.5 88.7 108.7]                     |  |  |  |
| Pitch                                                                 | 0.35                                               | 0.6                                        |  |  |  |
| Rotation time (s)                                                     | 0.5                                                | 0.0                                        |  |  |  |
|                                                                       |                                                    |                                            |  |  |  |
| Collimation (mm)                                                      | 64 × 0.6                                           | 0.5                                        |  |  |  |
| Collimation (mm)<br>Slice thickness/increment/kernel                  | 64 × 0.6<br>3.0/2.8 mm, D30                        | 32 × 0.5                                   |  |  |  |
| Collimation (mm)<br>Slice thickness/increment/kernel<br>CTDIvol (mGy) | 64 × 0.6<br>3.0/2.8 mm, D30<br>35cm: 7.6+15.1=22.7 | 32 × 0.5<br>3.0/2.8 mm, D30                |  |  |  |
| Collimation (mm)<br>Slice thickness/increment/kernel<br>CTDIvol (mGy) | 64 × 0.6<br>3.0/2.8 mm, D30<br>35cm: 7.6+15.1=22.7 | 32 × 0.5<br>3.0/2.8 mm, D30<br>35cm: 46.0* |  |  |  |





| THE MAYO CLINIC |                        |                                                                                                            | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-----------------|------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Compariso       | Comparison with PCD-CT |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                 | EID-MECT (8            | 30kV + AuSn120kV)                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| lodine          | Bismuth                | B<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                                         | Bundahora<br>Tanahora<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Parting<br>Par |  |  |
|                 | PCD-MECT (140          | 0kV [25 50 75 90keV])                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Iodine          | Bismuth                | $\begin{array}{c} POCT (1407 (2) (0.7) R + M) \\ \hline M = (1407 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)$ | POCTINE/JESTINI<br>Bana Linux<br>1=100(1+)200<br>0<br>0<br>0<br>0<br>0<br>50 Yin Ha (injus)<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |











# T MAYO CLINIC

#### MECT with Dual-source + split filter

- Advantages
  - Cost effective to implement based on dual-source scanners
     Reasonable spectra separation
  - Dose efficiency comparable to or better than current PCD-CT to perform multi-contrast agent imaging
  - More flexible dose allocation among beams
- Challenges
  - Half-rotation (~125 ms) temporal difference between the split beams
     Transition area of split beams
  - may slightly degrade the dose efficiency in multi-energy mode - Cross scatter between sources
  - and between split filters

# T MAYO CLINIC

# Summary and Discussions

- Multiple techniques have been proposed or under development to perform MECT (n>2) on EID-based scanner platform.
  - Multi-source MECT
  - Single-source MECT with spatial-spectral f
     Dual-source MECT with split filter
- EID-based MECT may have similar dose efficiency compared to current PCDbased scanners in multi-energy multi-contrast tasks.
- Due to spectral distortion, potential benefit of PCD-CT in multi-contrast imaging remains to be shown.
- May improve with better correction algorithms or PCD technology
- Clinical benefit of multi-contrast imaging itself remains to be demonstrated — For example, dose efficiency may not be good compared to multi-phase single-
- For example, dose efficiency may not be good compared to multi-phase single energy scans
   (\*Ren L et al, AAPM, Thursday morning CT session)

# MAYO CLINIC

# Acknowledgements

- Liqiang Ren, PhD
- Zhoubo Li, PhD
- Cynthia H. McCollough, PhD Thomas Allmendinger,
- Shuai Leng, PhD
- Joel G. Fletcher, MD
- Thomas Flohr, PhD
- Bernhard Schmidt, PhD
- Thomas Allmendinger, PhD
- Ahmad Halaweish, PhD

This work was supported by NIH R21 EB024071