Beyond Conventional CT Simulation: MR-only Treatment Planning & MR-SIM Neelam Tyagi, PhD

Memorial Sloan-Kettering Cancer Center

Disclosures

MSKCC has a master research agreement with Philips Healthcare

Diagnostic scans are not always sufficient for RT

Flat couch, Immobilization

Curved couch, no Immobilization

MR-RT systems or MR simulators for imaging in treatment position

- Integrated Flat table with indexing to fit immobilization
- Big bore size (70 cm)
 Coil bridge support
 MR compatible immobilization
- Lasers for alignment and marking
- Coils integrated posterior coil and an anterior surface coil

_

In the presence of Metal Artifacts

MR (T2w)

Metal artifact reduction sequences for MR-SIM

Philips implementation: OMAR

T2 TSE

Courtesy: Mo Kadbi, Philips Healthcare

MR-SIM: Immobilizations and Coil configuration

Coil sensitivity of surface coils drops very rapidly as the distance from the coil increases

Not all scanners are equipped with flexible surface coils

Commercial solution: GE adaptive image receive (AIR) Coils

McGee et al, 2018, Phys Med Biol 63 (8)

CT+MR simulation: clinical challenges

 Keeping rectal and bladder filling consistent between CT & MR can be challenging

May also result in potential target (seminal vesicles) miss if rely completely on MR

- 1. Bulk density based methods
- 2. Atlas-based methods
- 3. Direct conversion/voxel-based/ classification-based methods

accuracy < 2%

Dose calculation

4. Combination methods

Review Article by Johnstone et al, IJROBP 2018

61 articles on synthetic CT

Network Summary for Synthetic CT generation						
<u> </u>	→ Neural Ne	Neural Network				
Network Name	What it does	Image Set Requirement	Reference			
AutoEncoder	Unsupervised transformation	Paired	LeCun, 1987*			
Unet	Regression fit of MR to CT	Paired	Ronneberger, 2015			
GAN	Fits marginal distribution of MR intensities	Paired/Unpaired	Goodfellow, 2014			
cGAN or Pix2Pix	Conditional distribution P(CT MR)	Paired	Isola, 2016			
Cycle GAN	Conditional distribution with a consistent transformation constraint	Unpaired	Zhu, 2017			
Slide courtesy: Harini Veeraraghavan, Peter Klages, MSKCC						

Commercial synthetic CT solution: MRI Planner

MR-only clinical Evaluation at MSKCC

MRC/F DRNOR (Inical Evaluation at MSKCCBony
matchImage: Colspan="3">Nor (Inical Evaluation at MSKCCBony
matchImage: Colspan="3">Lateral = 0.3 ± 0.4
mmFiducial
matchImage: Colspan="3">Nor (Inical Evaluation at MSKCCFiducial
matchImage: Colspan="3">Image: Colspan="3">Lateral = 0.3 ± 0.4
mmFiducial
Colspan="3">Colspan="3">Image: Colspan="3">Colspan="3">Stateral = 0.3 ± 0.4
mmFiducial
Colspan="3">Colspan="3">Image: Colspan="3">Image: Colspan="3">Stateral = 0.3 ± 0.4
mmFiducial
Colspan="3">Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3">Image: Colspan="3"Fiducial
Colspan="3"Image: Colspan="3"Fiducial
Colspan="3"Image: Colspan="3"Fiducial
Colspan="3"</

Tyagi et al, PMB 2017

MR-only planning: Automated workflows for registration and autosegmentation

Tyagi et al, Radiation Oncology (2017)

Example Deep learning-based Detection and Segmentation of Prostate Cancer

Clinical Summary				
	# of prostate patients planned and treated using MR-only planing			
SBRT (800 cGy x 5)	318			
Moderate hypofractionation (270 cGy x 26)	54			
Standard fractionation (180 cGv x 40)	213			

Simulated, planned and treated 575 MR-only cases to date

- 14 patients failed synthetic CT reconstruction
- I 16 patients underwent a backup CT scan because of artifacts on the MR
- 20 patients where the fiducials were misidentified on MR and caught on fiducial QA
- a ~ 10% cases required repeat MR due to motion

Automatic gold FM localization for MR-only planning

(a)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rest 2301 (e) (e) atrix size 292x376x7	25, FOV 2	350×4	511×9	Dmm ³ , TE/TR	SelectSed (e) 2.7/4.6 ms, BW =1155 H	12/px, FA 10°
3D (
3D (Seeds implanted	Seeds counted on CT	TP	FP	FN	Dice overlap	Mean distance to CT (mm)	Standard deviation (mm
3D (Seeds implanted 1047	Seeds counted on CT 1046	TP 1008	FP 39	FN 38	Dice overlap 0.96	Mean distance to CT (mm) 0.79	Standard deviation (mm) 0.38

Motion on MRs due to long acquisition times

Foley catheter Full bladder

Conclusions

- Tremendous progress in the development of MR-RT systems are enabling MR-based treatment planning
- Further developments/improvements
 - Reduce MR acquisition time
 - Compressed sensing
 - **¤** Development of more motion robust sequences
 - Coil development in radiotherapy position to allow integration of advanced MR sequences into treatment planning

Acknowledgements

- <u>Medical Physics</u>: Margie Hunt, Joe Deasy, Jim Mechalakos, Sandra Fontenla, Laura Happerset, Kristen Zakian, Ricardo Otazo, Harini Veeraraghavan
- Radiation Oncology: Michael Zelefsky, Sean McBride, Marisa Kollmeier
- Philips MR-RT Scientists: Mo Kadbi, Aleksi Halkoa, Lizette Warner
- <u>MIM Scientists</u>: Kyle Ostergren, Mike Cominsky