PET for HN Cancer ART: Dose Response Feedback and Adaptive DPbN

Di Yan, DSc, FAAPM Radiation Oncology, BHS, Michigan

Acknowledgement

Shupeng Chen MS An Qin PhD George Wilson PhD **Daniel Krauss MD** Prakash Chinnaiyan MD, PhD Peter Chen MD Craig Stevens MD, PhD

No disclosures relevant to the contains of this presentation

Learning Objectives

• Metabolic imaging and dose response feedback for adaptive tumor dose painting

• Optimization of dose painting by number in target

• Clinical feasibility & workflow for adaptive DPbN

Metabolic Imaging: Application in RT

- Tumor has enhanced metabolic activity, which promotes the clinical use of metabolic imaging for target identification/delineation and post treatment response monitoring
- Metabolic image may not be a specific bio-marker to guide a targeting drug, but could be very useful for radiation treatment due to its link to all cancer hallmarks*

*D Hanahan & R Weinberg, Hallmarks of Cancer: the Next Generation. Cell 144, 2011

- <u>Radioresistant tumor cells</u> should maintain unaltered metabolic activity as measured using a metabolic image following fractionated radiation treatment
 - Therefore, it is possible to use Tumor Voxel Dose Response derived from temporal changes of metabolic image voxel intensity as the feedback for treatment adaptation

FDG-PET Imaging/Dose Response Feedback

FDG PET/CT image is a metabolic image, *not the best*, but very practical in clinics with relatively low cost,

- Tumor Voxel Dose Response Matrix (DRM) from the temporal changes of image intensity obtained during the treatment course (PET/CT deformable image registration)
- II. Tumor voxel Dose Prescription Function (DPF) with using the DRM and its baseline SUV₀
- **III. DPF** is used to be the objective function for tumor **DPbN** planning optimization

FDG-PET Imaging: Estimate Tumor Dose Response Matrix

Ę

 $DRM(v,30Gy) = \exp(31.75 \times \hat{A}(v,30Gy))$ Calibrated to have the numerical range of SF₂.

Bjork-Eriksson T, West C, etc. The in vitro radiosensitivity of human HN cancer. British J of Cancer. 1998;72:2371-5. Mean- $SF_2 = 0.48$

Tumor Voxel Dose Response Matrix (DRM)

Ę

Ē

Pre-tx SUV

DRM (Created in the week 4)

Local failure (3/6 months Post-Tx PET)

Overlap

Tumor Voxel Dose Prescription Function (DPF)

- Mathematic link between specific values of imaging intensity and the optimum clinical dose to be prescribed to the corresponding tumor voxel
- DPF can be designed to achieve a desired tumor control, while maintains the minimized integral dose
 - Is this necessary? Can we safely increase the uniform dose in target as high as needed?

Locally Controlled Tumors (35x2Gy)

Dose Prescription Function (DPF): TVCP Lookup Table

Ē

Dose Prescription Function: TVCP Lookup Table

(TCD ₅₀ , γ ₅₀)	SUV ₀ = 4.5	SUV ₀ = 8.5	SUV ₀ = 12.5	SUV ₀ = 16.5
DRM = 0.2	(3.72, 0.72)	(7.07, 0.63)	(13.62, 0.82)	(20.34, 0.87)
DRM = 0.3	(4.11, 0.66)	(7.79, 0.62)	(14.9, 0.82)	(22.05, 0.88)
DRM = 0.4	(4.6, 0.62)	(8.8, 0.62)	(17.69, 0.87)	(27.18, 0.97)
DRM = 0.5	(5.16, 0.59)	(10.41, 0.62)	(21.91, 0.87)	(34.01, 1.15)
DRM = 0.6	(5.81, 0.56)	(12.77, 0.58)	(29.71, 0.91)	(40.78, 1.44)
DRM = 0.7	(6.45, 0.52)	(17.44, 0.58)	(39.7, 1.24)	(47.65, 1.73)
DRM = 0.8	(7.46, 0.49)	(22.4, 0.61)	(46.08, 1.83)	(53.99, 2.42)
DRM = 0.9	(8.93, 0.46)	(28.03, 0.73)	(50.65, 2.42)	(58.92, 2.42)
DRM = 1.0	(10.58, 0.45)	(31.38, 0.91)	(55.51, 2.42)	(62.74, 2.42)
DRM = 1.1	(14.08, 0.47)	NA	NA	NA
DRM = 1.2	(15.87, 0.48)	NA	NA	NA

Tumor Voxel DPF (TCP = 0.9) design based on (SUV₀, DRM)

85 Gy

52.5

30 Gy

Ę

Can it be managed safely by using the uniform prescription dose up to 150Gy?

DPbN (solid-line) *vs* **Standard IMRT (dash-line)**

Ē

Summary

- Dose response matrix can be constructed using FDG-PET/CT images
- Tumor *DRM* with its baseline *SUV*₀ provide very useful, maybe unique, information to design the optimal dose for each tumor voxel
- DPbN is necessary and could be safely applied DPF How many images needed to implement the adaptive DPbN? DRM = 0.2 SUV₀ DRM = 0.3 DRM = 0.4 DRM = 0.5 DRM = 0.6 DRM = 0.7 -DRM = 0.8 estDRM DRM = 0.9 -DRM = 1 40 60 80 100 Dose (Gv) **DPbN** Treatment **DPbN Planning** Optimization Pre-treatment Treatment Treatment PET/CT PET/CT PET/CT