PET for HN Cancer ART: Dose Response Feedback and Adaptive DPbN

Di Yan, DSc, FAAPM
Radiation Oncology, BHS, Michigan
Acknowledgement

Shupeng Chen MS
An Qin PhD
George Wilson PhD
Daniel Krauss MD
Prakash Chinnaiyan MD, PhD
Peter Chen MD
Craig Stevens MD, PhD
Disclosures

No disclosures relevant to the contents of this presentation
Learning Objectives

• Metabolic imaging and dose response feedback for adaptive tumor dose painting

• Optimization of dose painting by number in target

• Clinical feasibility & workflow for adaptive DPbN
Metabolic Imaging

- **PET**: $[^{18}F, ^{11}C]$ Glucose, Glutamine, Glutamate, Lactate, Acetate, Choline
- **MRI**: Glu-CEST, Hyperpolarized $[1^{-13}C]$ Pyruvate, Lactate, Glucose
Metabolic Imaging: Application in RT

• Tumor has enhanced metabolic activity, which promotes the clinical use of metabolic imaging for target identification/delineation and post treatment response monitoring

• Metabolic image may not be a specific bio-marker to guide a targeting drug, but could be very useful for radiation treatment due to its link to all cancer hallmarks*

• Radioresistant tumor cells should maintain unaltered metabolic activity as measured using a metabolic image following fractionated radiation treatment

 — Therefore, it is possible to use Tumor Voxel Dose Response derived from temporal changes of metabolic image voxel intensity as the feedback for treatment adaptation
FDG-PET Imaging/Dose Response Feedback

FDG PET/CT image is a metabolic image, *not the best*, but very practical in clinics with relatively low cost,

I. Tumor Voxel Dose Response Matrix (DRM) from the temporal changes of image intensity obtained during the treatment course (PET/CT deformable image registration)

II. Tumor voxel Dose Prescription Function (DPF) with using the DRM and its baseline SUV\(_0\)

III. DPF is used to be the objective function for tumor DPbN planning optimization
FDG-PET Imaging: Estimate Tumor Dose Response Matrix

\[\ln \frac{SUV(v, d)}{SUV_0(v)} = \hat{A}(v, 30\text{Gy}) \cdot d \]
SF₂ - tumor voxel survival fraction in 2Gy

A linearly proportional to SF₂, i.e.

$$\hat{A}(v, \bar{d}) = k \cdot \frac{\ln SF_2(v)}{2};$$

$$SF_2(v) \sim \exp \left(\frac{2 \cdot \hat{A}(v, \bar{d})}{k} \right) = DRM(v, \bar{d})$$

$DRM_{(v,30Gy)} = \exp \left(31.75 \times \hat{A}(v,30Gy) \right)$ Calibrated to have the numerical range of SF₂.

Bjork-Eriksson T, West C, etc. The in vitro radiosensitivity of human HN cancer. British J of Cancer. 1998;72:2371-5. Mean-$SF_2 = 0.48$
Tumor Voxel Dose Response Matrix (DRM)
Pre-tx SUV

DRM (Created in the week 4)

Local failure (3/6 months Post-Tx PET)

Overlap
Inter- & Intra-tumoral Variation in Dose Response

Controlled by ~66Gy!

Patients

HPV+

HPV-
Tumor Voxel Dose Prescription Function (DPF)

• Mathematic link between specific values of imaging intensity and the optimum clinical dose to be prescribed to the corresponding tumor voxel

• DPF can be designed to achieve a desired tumor control, while maintains the minimized integral dose

 – Is this necessary? Can we safely increase the uniform dose in target as high as needed?
Locally Controlled Tumors (35x2Gy)

$DRM \sim SF_2$: Tumor voxel survival fraction in 2Gy

$f(SUV_0) \sim N_0$: Tumor voxel clonogens

$TVCP(v, DRM, SUV_0, d)$
\(TVCP(SUV_0, DRM, TCD_{50}, \gamma_{50}, d) \)

determined using a likelihood of potential control and failure of tumor voxel on each weekly (SUV_0, TMR) plot

\[\text{Max } L(TCD_{50}, \gamma_{50} \mid TVCP(d_i); i = 1, 2, \ldots, 7) \]
Dose Prescription Function (DPF): TVCP Lookup Table

SUV₀ = 4.5

SUV₀ = 8.5

SUV₀ = 12.5

SUV₀ = 16.5
Dose Prescription Function: TVCP Lookup Table

<table>
<thead>
<tr>
<th>(TCD${50}$, $\gamma{50}$)</th>
<th>SUV$_0$ = 4.5</th>
<th>SUV$_0$ = 8.5</th>
<th>SUV$_0$ = 12.5</th>
<th>SUV$_0$ = 16.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRM = 0.2</td>
<td>(3.72, 0.72)</td>
<td>(7.07, 0.63)</td>
<td>(13.62, 0.82)</td>
<td>(20.34, 0.87)</td>
</tr>
<tr>
<td>DRM = 0.3</td>
<td>(4.11, 0.66)</td>
<td>(7.79, 0.62)</td>
<td>(14.9, 0.82)</td>
<td>(22.05, 0.88)</td>
</tr>
<tr>
<td>DRM = 0.4</td>
<td>(4.6, 0.62)</td>
<td>(8.8, 0.62)</td>
<td>(17.69, 0.87)</td>
<td>(27.18, 0.97)</td>
</tr>
<tr>
<td>DRM = 0.5</td>
<td>(5.16, 0.59)</td>
<td>(10.41, 0.62)</td>
<td>(21.91, 0.87)</td>
<td>(34.01, 1.15)</td>
</tr>
<tr>
<td>DRM = 0.6</td>
<td>(5.81, 0.56)</td>
<td>(12.77, 0.58)</td>
<td>(29.71, 0.91)</td>
<td>(40.78, 1.44)</td>
</tr>
<tr>
<td>DRM = 0.7</td>
<td>(6.45, 0.52)</td>
<td>(17.44, 0.58)</td>
<td>(39.7, 1.24)</td>
<td>(47.65, 1.73)</td>
</tr>
<tr>
<td>DRM = 0.8</td>
<td>(7.46, 0.49)</td>
<td>(22.4, 0.61)</td>
<td>(46.08, 1.83)</td>
<td>(53.99, 2.42)</td>
</tr>
<tr>
<td>DRM = 0.9</td>
<td>(8.93, 0.46)</td>
<td>(28.03, 0.73)</td>
<td>(50.65, 2.42)</td>
<td>(58.92, 2.42)</td>
</tr>
<tr>
<td>DRM = 1.0</td>
<td>(10.58, 0.45)</td>
<td>(31.38, 0.91)</td>
<td>(55.51, 2.42)</td>
<td>(62.74, 2.42)</td>
</tr>
<tr>
<td>DRM = 1.1</td>
<td>(14.08, 0.47)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>DRM = 1.2</td>
<td>(15.87, 0.48)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Tumor Voxel DPF (TCP = 0.9) design based on (SUV₀, DRM)
Can it be managed safely by using the uniform prescription dose up to 150Gy?
9 beams IMRT:
Conventional Plan: 54Gy to CTV & 70Gy to GTV
DPbN Plan: 54Gy to CTV & Dose Painting to GTV
DPbN (solid-line) vs Standard IMRT (dash-line)
Summary

- Dose response matrix can be constructed using FDG-PET/CT images.
- Tumor DRM with its baseline SUV_0 provide very useful, maybe unique, information to design the optimal dose for each tumor voxel.
- DPbN is necessary and could be safely applied.
- How many images needed to implement the adaptive DPbN?

Pre-treatment PET/CT → **SUV_0** → **estDRM** → **Treatment PET/CT** → **Treatment PET/CT** → **DPbN Treatment** → **DPbN Planning Optimization**