

Clinical MRgRT timeline

SITEMAN CANCER CENTER

•1/2014 -First patient treatment

•9/2014 -First online adaptive treatment

•1/2015 - First online adaptive SBRT

•2/2015 - First online adaptive SBRT with automated MR image based gating

•5/2018 –MR-linac comes online

•7/2018 – First online adaptive SBRT on MR-linac Over 10 clinical sites

Seoul National University Hospital, Seoul, South Korea Washington University, St. Louis, Missouri, USA*

UCLA, Los Angeles, California, USA

University of Wisconsin, Madison, Wisconsin, USA* University of Miami, Miami, Florida, USA

Heidelberg*

Miami Cancer Institute*

NYP / Weill

Sheikh Khalifa, Dubai VUMC, Amsterdam, Netherlands

Gemelli, Rome, Italy

National Cancer Center, Tokyo, Japan

Henry Ford Medical Center, Detroit, Michigan, USA *

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

Henke, Contreras et al, Clinical Oncology, in submission

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

SITEMAN CANCER CENTER

MRI imaging is better than CBCT

- Onboard CT images used for routine treatment localization were collected
- o MVCT or kVCT
- $_{\odot}\,$ In-plane resolution: ~1-1.5mm
- o Slice thickness: 2.5 4.0 mm
- 3 radiation oncologists evaluated the low-field MRI & onboard CT images side-by-side

Noel, Parikh et al, Acta Oncologica, 2015

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

Cancer	

Spi**Bah@**ord

Noel, Parikh et al, Acta Oncologica, 2015

Liver Metastasis Patient

Liver

Noel, Parikh et al, Acta Oncologica, 2015

MRI vs CBCT Results

- When examined by structure type, there were differences in which modality offered better visualization:
 - o Bone:
- OB-CT (48%) or Equivalent (52%)
 Pulmonary
 Systems/Airways:
 Equivalent (90%)
- Target:
- MRI (40%), Equivalent (10%) o Soft Tissues: MRI (92%)
- Vasculature: MRI (94%)
 CNS: MRI (100%)

	Majo	rity Agreeme	ent By Stru	ucture Type	
Percentage					■ Unable to S ■Equivalent ■ OB-CT Bets ■ MRI Better
Sept Incitial	Bore (82)	Target Ligh	States (98)	e Ban Daz Bin	

Noel, Parikh et al, Acta Oncologica, 2015

First clinical paper with adaptive MR guided radiation

Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications, Acharya, et al. IJROBP Vol. 94, No. 2, pp. 394e403

FMEA analysis of QA

 Found unique points of failure in ART, but some issues in standard IMRT not found. Created processes to review contours and perform virtual QA, no physical QA!

SITEMAN CANCER CENTER

Online Adaptive SBRT Phase I Study

Radiother Oncol. 2017 Dec 22. pii:

Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen.

Henke L¹, Kashani R¹, Robinson C¹, Curcuru A¹, DeWees

T

1, Bradley J

1, Green O

1, Michalski J

1, Mutic

S

1, Parikh P

2, Olsen J

3.

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

Online Adaptive SBRT Phase I Study

- 20 patients with unresectable primary or oligometastatic disease of the liver (n = 10) & non-liver (n=10) abdomen planned for SBRT
- Prescription: 50Gy/5fx with online, adaptive MR-IGRT approach
- Isotoxicity approach, with dose escalation (or de-escalation) based on hard OAR constraints

Phase I Trial Example Case

Solitary NSCLC Adrenal Metastasis

- 51yo woman, 1 year disease-free period
- Biopsy-proven, solitary 1.8cm adrenal ADC metastasis
- KPS 100%
- Preferred non-surgical option

Phase I Trial Example Case

Solitary NSCLC Adrenal Metastasis

Phase I Trial Example Case

Solitary NSCLC Adrenal Metastasis

•Day 2- Application of day 1 plan violates small bowel & stomach OAR constraints

Phase I Trial Example Case

Solitary NSCLC Adrenal Metastasis

Phase I Trial Example Case

Solitary NSCLC Adrenal Metastasis

- Adaptive plan reduces small bowel and stomach dose
- PTV coverage minimally sacrificed
- PTV coverage remains at goal 50Gy

Henke et al, R&O, 2017

Phase I Trial Example Case

Solitary NSCLC Adrenal Metastasis

- · Patient with zero reported acute or late toxicity
- Radiographic CR at 3 and 6 months

SITEMAN CANCER CENTER

Phase I Results—Timing

Median on table time: 79 minutesMedian segmentation time: 9 minMedian re-planning time: 10 min

· Median QA time: 5 min

Henke et al, R&O, 2017

SITEMAN CANCER CENTER

Phase I Results—Plan Adaptation

- 83% (79/95) fx adapted—all patients had ≥1
- Plans adapted for 64% of liver & 98% of nonliver abdomen fx
- Initial plans would have violated OAR constraints in 70/95 fx
- 100% of OAR violations resolved with adaptive planning

Henke et al, R&O, 2017

Phase I Results—OAR Sparing

Henke et al, R&O, 2017

SITEMAN CANCER CENTER

Phase I Results—Clinical Outcomes

- •No Grade 3 toxicity at median 11.8 mo f/u
- •Expected 20-30% using aggressive dose regimen
- •No change in patient-reported EORTC-qlq 30 QOL scores (P = 0.29) at 0, 6, and 12wks.

Henke et al, R&O, 2017

Locally Advanced Pancreatic

Cancer is Bad

Hammel et al, JAMA, 2016

• "If cancer is the emperor of all maladies, then pancreatic adenocarcinom a is the ruthless dictator of all cancers" – Deborah Schrag

Rames: Jewich Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Natures

Reviewing MRgRT data to date

- Reviewed five institutions' data for pancreas MRgRT (VUMC, Wisconsin, UCLA, Washington University, University of Miami)
- Locally advanced, borderline resectable and medically inoperable pancreatic cancer patients treated up to 8/2016
- Practices varied between dose, fractionation, technique between institutions
- · Looked at dose as a predictor of survival

Maximum BED > 90 Gy 180 160 23 patients adapted, 40 - 50 Gy / 140 5 fx, 50 – 67.5 Gy / 120 15 fx 100 80 19 patients adapted, 33 -40 Gy / 5 fx, 50 – 60 Gy / 30 fx 20

SITEMAN CANCER CENTER

Age (median)	68	62	0.068
Sex:			
Male	14	12	0.879
Female	9	7	
Location:			
Head	17	12	0.453
Tail	6	7	
Resectability:			
BRPC	4	6	0.409
LAPC	17	13	
Medically Inoperable	2	0	
Median CA 19-9 at			
diagnosis (U/mL)	263.4	82.5	0.099
Node positive	4	4	0.698

Rudra S, Jiang N, Rosenberg S, Olsen J, Lagerwaard F, Bruynzeel A, Parikh P, Bassetti M, Lee P; ASTRO 2017

Post – RT Surgery	3	2	1.000
Ind. Chemo:			
Gem-based	9	10	0.970
FOLFIRINOX	11	8	
FOLFOX	1	0	
None	2	1	
Conc. Chemo:			
Gem-based	4	9	0.094
Capecitabine	3	4	
None	16	6	
Radiation Factors			
BED ₁₀ of Rx (Gy)	72.0	59.5	< 0.001
maxBED ₁₀	101.1	66.9	< 0.001
Median Fractions Adapted	5	0	< 0.001
per patient			
GTV (cc)	38	36	0.714

Rudra S, Jiang N, Rosenberg S, Olsen J, Lagerwaard F, Bruynzeel A, Parikh P, Bassetti M, Lee P; ASTRO 2017

Rames: Jewish Hospital • Washington University School of Merticine • National Cancer Institute • National Comprehensive Cancer Network

SITEMAN CANCER CENTER

RT Technique	Dose and Fractionation	Number of Patients
Conventional	50.4 Gy in 28 Fractions	6
	40 - 55 Gy in 25 Fractions	7
Hypofractionated	50 - 67.5 Gy in 10-15 Fractions	8
SBRT (maxBED ₁₀ < 90)	30 – 40 Gy in 5 Fractions	6
SBRT (maxBED ₁₀ > 90)	40 – 52 Gy in 5 Fractions	15

Rudra S, Jiang N, Rosenberg S, Olsen J, Lagerwaard F, Bruynzee

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

SITEMAN CANCER CENTER

Rudra S, Jiang N, Rosenberg S, Olsen J, Lagerwaard F, Bruynzeel A, Parikh P, Bassetti M, Lee P, ASTRO 2017

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

Overall Survival – median follow-up 22 months

Updated: 7/2018 – Rudra et al, in

SITEMAN CANCER CENTER

Continued high local control

Updated: 7/2018 -Rudra et al, in

SITEMAN CANCER CENTER

No change in distant metastases

Updated: 7/2018 Rudra et al, in

Gr 3+ GI Toxicity		
maxBED ₁₀ >90	0%	
maxBED ₁₀ <90	15.8%	

Rudra S, Jiang N, Rosenberg S, Olsen J, Lagerwaard F, Bruynzeel A, Parikh P, Bassetti M, Lee P; ASTRO 2017

Results in Context

<u>Study</u>	Median OS (months)
LAPO7 - 3DCRT	15.2
MDACC - mostly 3DCRT	15*
MDACC - IMRT	17.8*
MRgRT – standard IMRT & SBRT	14.8
MSKCC - IMRT	23
Harvard – SBRT	20
JHU – SBRT	18.4
MRgRT – Hypofrac/High dose SBRT	Not reached - 27.8

Open Questions

- Hypofractionation vs SBRT?
 Current technology and MD time commitment at the machine makes hypofractionation difficult

 Is also a data as
 - difficult

 No clear data on whether patients receiving 67.5 Gy / 15 fractions are doing better, worse or same at 50 Gy / 5 fractions

 We don't have much surgery data after 50 Gy / 5 fractions, will need to acquire

SITEMAN CANCER CENTER

Open Questions

- Do the intestinal contents move during the plan adaptation process?
 - Anecdotal imaging (ie, imaging redone during treatment due to patient/machine issues) suggest some motion, but less than motion from prior fraction to today
 - This needs to be investigated formally to create action levels on plan adaptation, and engineering goals for industry

SITEMAN CANCER CENTER

Patient example (intrafx motion)

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

SITEMAN CANCER CENTER

Does the adaptation work with intrafx motion?

arnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National

SITEMAN CANCER CENTER

Open Questions

- What is the correct organ at risk constraint for GI structures at risk?
 - We do not have cumulative dose technology
 - First prospective multiinstitutional study will have more conservative dose constraints since primary aim is safety
 - 33 Gy to no more than 1 cc of stomach, duodenum, small and large bowel

Physician contouring on demand –

SITEMAN CANCER CENTER

Changing targets

• 2 MD can mean 2 gold standard segmentations

nes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

New Radiographer requirements

- Radiographers already had to learn MR based localization and safety
- Now learning MR based segmentation for normal tissue structures
- We created two 'Advanced Practice Radiation Therapists' who lead on-table segmentation and plan generation.
- Have increased to 8 adapted patients / day!

Idea from Europe

Next Step for Pancreas MRgRT VUmc Wu University Medical Center Amsterdam Washington UCLA University in St. Louis 50 Gy / 5 fractions Inoperable Pancreas Cancer after >= 3 months of chemotherapy MR guided, adapted and tracked Primary endpoint: Toxicity at ViewRay Launches Clinical Trial Following Compelling Early 90 days Pancreatic Cancer Data with MRIdian System Secondary endpoints: Disease related outcomes SNUH SEOUL NATIONAL UNIVERSITY Goal: 100 patients Henry Ford HEALTH SYSTEM Gemelli 🚳 UNIVERSITY

Worldwide Acknowledgements VUMC U Wisconsin Frank Lagerwaard Michael Bassetti Anna Bruynzeel Stephen Rosenberg •Gemelli University of Miami Vincezo Valentini **Lorraine Portelance** ·Henry Ford Hospital **Eric Mellon** Ben Movsas SNUH UCLA Health Eui Kyu Chie Percy Lee Naomi Jiang

Wash U Acknowledgements

- •Olga Green, PhD
- ·Lauren Henke, MD
- ·H. Omar Wooten, PhD
- Deshan Yang, PhD
- •Tianyu Zhao, PhD
- ·Harold Li, PhD
- ·Yanle Hu, PhD
- ·Vivian Rodriguez, PhD
- ·Sasa Mutic, PhD
- •Jeff Michalski, MD
- · Soumon Rudra, MD
- Jeff Bradley, MD
- Jeff Olsen, MD
- Cliff Robinson, MD
- Ben Fischer-Valluck, MD
 - Sahaja Acharya, MD

SITEMAN CANCER CENTER

www.siteman.wustl.edu

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Cemprehensive Cancer Network