Mathematical Modeling in Cancer Therapy

- Speakers
 - I. Clemens Grassberger: Modeling interactions of biological agents & chemotherapy with radiation
 - II. Gilmer Valdes: The Additive Tree
 - III. Guillaume Cazoulat: Modeling Tissue Biomechanics for Image-Guided Cancer Therapy

MARVARD MEDICAL SCHOOL CENERAL HOSPITAL RADIATION ONCOLOGY

Modeling Interactions of Biological Agents & Chemotherap with Radiation

in the

Clemens Grassberger

HARVARD MEDICAL SCHOOL

AAPM 2018 – Nashville

- Introduction / Motivation
- Modeling chemotherapy combined with radiation
 - Overview
 - TCP based modeling population data
 - Dynamic Models of Clonogenic Growth
- Modeling targeted agents combined with radiation
 - Growth Modeling
 - Resistance Modeling
- Conclusion & Discussion

MARVARD MEDICAL SCHOOL

111-1

Introduction

- Optimization plays a large role in radiotherapy: delivery, fractionation, target dose, OAR tradeoffs
- Contrary: chemotherapy (apart from exceptions) no such optimization

HARVARD MEDICAL SCHOOL

Introduction

- Optimization plays a large role in radiotherapy: delivery, fractionation, target dose, OAR tradeoffs
- Contrary: chemotherapy (apart from exceptions) . no such optimization
- Chemo-radiation, even less
- Aim: introduce *clinically* applicable chemo-radiation modeling approaches & extensions necessary for modeling targeted agents

HARVARD MEDICAL SCHOOL MASSACHUSETTS CENERAL HOSPITAL RAMATION OVER

111-

111

Introduction

- Optimization plays a large role in radiotherapy: delivery, fractionation, target dose, OAR tradeoffs
- Contrary: chemotherapy (apart from exceptions) no such optimization
- Chemo-radiation, even less
- Aim: introduce clinically applicable chemo-radiation modeling approaches & extensions necessary for modeling targeted agents

Prevalence of Concurrent Therapy ightarrow potential for Targeted Agents + RT

Patients treated with combined chemo-radiation

Site	Incidence US 2015 number in '000 (% of total)	Percentage treated with chemotherapy and radiation	Targetable mutations	
Breast	234 (14.1)	25%	HER2, mTor, CDK4/6	
Lung	221 (13.3)	29%	EGFR, ALK, ROS, VEGF(R2), ME PD-1	
Colon	93(5.6)	40%**	VEGF(R2), EGFR, KIT/RAF	
Bladder	74(4.5)	30%**	Possibly EGFR, FGFR3, mTOR, PIK3CA, RAS,	
Non-HL	72(4.3)	12%	CD20/30, PI3K	
Uterine corpus	55(3.3)	12%**	VEGF	
Head and Neck	46(2.8)	30%*	EGFR, PI3K, Notch	
Rectal	40(2.4)	12%	VEGF(R2), EGFR, KIT/RAF	
Total	835 (50.4)	26%		

_			
_			
_			

Modeling Therapy

Two typical methods to develop a mathematic model

Types of Modeling Approaches

- Two "axes" on which models can be distinguished:
 - General <-> Site-SpecificPhenomenological <-> Mechanistic
 - Ū.
- Models parameterized using
 - in vitro dataclinical patient data

Types of Modeling Approaches

- Two "axes" on which models can be distinguished:
 - General <-> Site-Specific
- General Constraints
 Phenomenological <-> Mechanistic
 Models parameterized using

 in vitro data
 clinical patient data

 Focus on clinical applicability

 phenomenological models based on outcome data

 Image: Intervention of the state of

Types of Modeling Approaches

- Two "axes" on which models can be distinguished:
 - General <-> Site-Specific
 - Phenomenological <-> Mechanistic
- Models parameterized using
 - in vitro data
 clinical patient data
- Focus on clinical applicability
- \rightarrow phenomenological models based on outcome data

MARVARD MEDICAL SCHOOL

Modeling interaction of chemotherapy & radiation

- Two basic ways of thinking about cooperation
 - Spatial cooperation

MARVARD MEDICAL SCHOOL

111 - T

Modeling interaction of chemotherapy & radiation

- Two basic ways of thinking about cooperation
 - Spatial cooperation

Modeling interaction of chemotherapy & radiation

Modeling interaction of chemotherapy & radiation

Modeling interaction of chemotherapy & radiation

- Two basic ways to model chemotherapy combined with radiation
- Independent action
- - chemo equals a dose of X GyE

HARVARD MEDICAL SCHOOL WMASSACHDNETTE RAISEACHDONTAL RAISEACHDONTAL

Modeling interaction of chemotherapy & radiation

Two basic ways to model chemotherapy combined with radiation

Application – muscle-invasive bladder cancer modeling all published results of RT and chemo-RT in muscle-invasive bladder cancer

Used linear-quadratic model to fit radiation only RT or 13 st Chemo-RT: 27 trials additive effect only Radiosensitization ... CR CR . 36Gy in 2Gy/fx EQD2 (Gy) EQD2 (Gy) OS = CS + RS (1 - CS) $BED = f_c D \cdot$ Plataniotis et al. (2014) IJROBP MASSACHUSETTS GENERAL HOSPIT HARVARD MEDICAL SCHOOL

Overview over Clinical Studies

- Additive Effects:
 - Head and Neck: 7-12 Gy
 - Anal Cancer: 4-8 Gy
- Cervical Cancer: 0.5-8 Gy radiosensitization factors: 1.2-1.35 in pancreas & bladder
- Table 3. O

Source	Site	Effect type	Effect of chemotherapy	
Plataniotis and Dale (2008)	Cervix	Independent action	Equivalent to 0.4-8 Gy in 2 Gy fractions, depending on tumor radiosensitivity	
Kasibhatla et al (2007) and Fowler (2008)	Head and neck	Independent action	Equivalent to 8.8 Gy ₁₀ or 7.6 Gy in 2 Gy fractions	
Moraru et al (2014)	Pancreas	Sensitization only	Radiosensitization factor 1.18-1.35	
Plataniotis and Dale (2014)	Bladder	Independent action or sensitization	Equivalent to 36.3 Gy in 2 Gy fractions or radiosensensitization factor of 1.3	
Durante et al (2015)	Pancreas	Independent action	Equivalent to 94 Gy6.77	
Hartley et al (2010)	Head and neck	Independent action	Equivalent to 9.3 Gy ₁₀ for tumor and 6.4 Gy ₁₀ for mucosa	
Pettit et al (2013)	Head and neck	Independent action	Equivalent to 3-12.7 Gy10, depending on chemotherapy regimen	Grassberger &
Pettit et al (2013)	Anal	Independent action	Equivalent to 4.1 Gy ₁₀ for 5-FU and 9.1 Gy ₁₀ for MMC/5-FU	Paganetti, PMB 2016
	HARVARD MEDICAL	SCHOOL MASSACHUS	ATTS SEPTAL	án).

Overview over Clinical Studies

- Additive Effects:
 - Head and Neck: 7-12 Gy
 - Anal Cancer: 4-8 Gy Cervical Cancer: 0.5-8 Gy
- radiosensitization factors: 1.2-1.35 in pancreas & bladder Main Challenge: low "dimensionality" of clinical outcome data
- makes fitting of complex models difficult ve effect only Rad

Overview over Clinical Studies

- Additive Effects:
 - Head and Neck: 7-12 Gy
 - Anal Cancer: 4-8 Gy Cervical Cancer: 0.5-8 Gy
- radiosensitization factors: 1.2-1.35 in pancreas & bladder
- Main Challenge: low "dimensionality" of clinical outcome data
- makes fitting of complex models difficult
- One solution: use the whole survival curve, or even patient-level data to inform models
- dynamic models of clonogenic growth

10

7

Dynamic Models of Clonogenic Growth

- formulations usually based on ordinary differential equations
 - Tumor growth: Gompertz
 - Radiation cell kill: Linear-Quadratic: $SF = e^{-(aD+bD^2)}$
 - Chemo cell kill: Log cell kill: $SF = e^{-(\partial D(t))}$

Concurrent vs Sequential CRT

- Idea: to combine radiation-only & chemo-only models \rightarrow derive in-vivo radiosensitization factor

Concurrent vs Sequential CRT

- Idea: to combine radiation-only & chemo-only models \rightarrow derive in-vivo radiosensitization factor
- Difference between concurrent and sequential explained by shorter treatment time

Concurrent vs Sequential CRT

- Idea: to combine radiation-only & chemo-only models \rightarrow derive in-vivo radiosensitization factor
- Difference between concurrent and sequential explained by shorter treatment time

Concurrent vs Sequential CRT

- Idea: to combine radiation-only & chemo-only models \rightarrow derive in-vivo radiosensitization factor
- Difference between concurrent and sequential explained by shorter treatment time
- $\rightarrow\,$ stratify the patients by growth rate results in variable difference between sequential and concurrent CRT
- provides a framework for the optimization of combined chemo-radiation scheduling and sequencing, and can include other modalities, such as targeted agents

Outline

- Introduction / Motivation
- Modeling chemotherapy combined with radiation
 - Overview
 - TCP based modeling population data
 - Dynamic Models of Clonogenic Growth
- Modeling targeted agents combined with radiation
 - Growth Modeling
 - Resistance Modeling
- Conclusion & Discussion

HARVARD MEDICAL SCHOOL MASSACHUSETTS RADIATION ONCOLOGY

111

Jepanese EDFR mutant NSCLC

11

Targeted Therapy

Targeted Therapy

Overal

- Very successful in Non-Small Cell Lung Cancer (NSLC)
- Main oncogenic driver mutations for which FDA-approved inhibitors exist: EGFR & ROS/ALK

Targeted Agent Effect Models

- Similar to chemo, but need something additional → resistant sub-populations
- Modeling more sensitive to exact growth models
- exponential growth is bad approximation over long time periods
 more realistic growth models exhibit decreasing growth rate with increasing tumor size
- more realistic growth models exhibit d
 most popular: Gompertz, Logistic

.

Targeted Agent Effect Models

- Similar to chemo, but need something additional ightarrow resistant sub-populations
 - Modeling more sensitive to exact growth models
- Resistance development

.

- Develops in vast majority of cases
- Mathematical formulation based on work in bacteriology (Luria & Delbrueck)
 Used stochastic processes with a differentiation hierarchy to represent sensitive & resistant cells

Modeling Resistance

Modeling Resistance

- Pre-Existing Resistance
- Acquired Resistance (Persister-Evolution)

Modeling Resistance – Tumor Growth Trajectories

Modeling Resistance – Tumor Growth Trajectories

Modeling Resistance - Tumor Growth Trajectories

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
 Targetable mutations also exist in stage III disease

HARVARD MEDICAL SCHOOL

ill ha

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
- Targetable mutations also exist in stage III disease
- → NCT01553942 the ASCENT trial

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
- Targetable mutations also exist in stage III disease
- Application: to find optimal induction lengths for stage III patients (patient-specific?)

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
- Targetable mutations also exist in stage III disease
- Application: to find optimal induction lengths for stage III patients (patient-specific?)

Take aways - chemo-radiation modeling

- 2 main ways to see chemo-radiation when analyzing clinical data: spatial vs. in-field cooperation
 - additive action vs. radiosensitization
 - usually you go into data-analysis with a pre-existing assumption
 - Not the case for in-vitro / preclinical models (interaction via cell-cycle dynamics, inhibition of repair pathways, ...)
 - standard biostatistical outcome analysis always a good idea
- Difference chemotherapy/RT modeling
 - RT: modeled continuously, linear-quadratic model
 - chemotherapy: modeled binary, no dose-dependence

MARVARD MEDICAL SCHOOL MASSACHLINETTSL RABBATION ONCOLOGY

Take aways - targeted agent modeling

- Combining RT with targeted agents requires new approaches & extended models
 - Growth realistic growth models due to longer time frames
 - Resistance emergence of completely resistant sub-populations
- shifting aims is the purpose of the RT regimen either to
 - maximize cell kill
 OR
 - minimize resistance development (to EGFR/ALK/ROS inhibitor)
- Essential for their inclusion in stage III, raises interesting question/trade-off:
 is RT there to support the agent or the other way round?
- the extent of molecular sub-typing will inhibit clinical trials for every indication & combination

MARVARD MEDICAL SCHOOL

Thank you for your attention & special thanks to

MARVARD MEDICAL SCHOOL MASSACHUSE RADIATION Harald Paganetti Thomas Bortfeld Lecia Sequist Henning Willers Sophia Kamran David Hall Aimee McNamara Torunn Yock David Craft & many others

111

Parts of the work supported by NCI C06 CA059267