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Exporimontal

design
New knowledge

(1) Gallasch et al. 2013, Journal of Clinical Bioinformatics 2:23
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Prevalence of Concurrent Therapy = potential for Targeted Agents + RT

= Patients treated with combined chemo-radiation

Incidence US 2015 Targetable
numbei mutations
(% of total)
Breast 234 (14.1) HER2, mTor, CDK4/6
Lung 221(133) £GR, ALK, ROS, VEGFR2), MET,
P01
Colon 93(5.6) 209 VEGFR2), EGPR, KIT/RAF
Bladder 74(4.5) 3007 Possbly EGFR, FGFR3, mTOR,
PIKSCA, RAS,
Non-HL 72(43) 12% C020/30, FI3K
Uterine corpus 55(3.3) 12%** Vecr
Head and Neck 46(2.8) 30%* EGFR, PI3K, Notch
Rectal 40(24) 12% VEGHR2), EGTR,KIT/RAT
Total 835 (50.4) 26%
Fed CE

Modeling Therapy

® Two typical methods to develop a mathematic model

battom-up appraach top-down approach Which approach is
Wy ota 5008 Garuzzon o, 070 advisable depends on the

research questionand
available data at hand, but
generally itis assumed
that:

:
concuusians | Concuusens

Grassberger & Paganetti, PMB 2016

Types of Modeling Approaches

= Two "axes” on which models can be distinguished:
= General <-> Site-Specific
= Phenomenological <-> Mechanistic
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= Models parameterized using
= invitro data
= clinical patient data

e Mechanistic

Grassberger & Paganetti, PMB 2016
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Types of Modeling Approaches

= Two "axes” on which models can be distinguished:
= General <-> Site-Specific

e 997

= Phenomenological <-> Mechanistic

invitro
= Models parameterized using
= invitro data
= clinical patient data
= Focus on clinical applicability clinical data

-> phenomenological models based
on outcome data
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Types of Modeling Approaches

= Two "axes” on which models can be distinguished:

= General <-> Site-Specific == E
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= Phenomenological <-> Mechanistic

= Models parameterized using i %
= invitro data W

= clinical patient data

= Focus on clinical applicability
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-> phenomenological models based
on outcome data
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Grassberger & Paganetti, PMB 2016
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Modeling interaction of chemotherapy & radiation

= Two basic ways of thinking about cooperation
= Spatial cooperation
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Modeling interaction of chemotherapy & radiation

= Two basic ways of thinking about cooperation
= Spatial cooperation
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Modeling interaction of chemotherapy & radiation
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Modeling interaction of chemotherapy & radiation

= Two basic ways of thinking about cooperation
= Spatial cooperation
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Modeling interaction of chemotherapy & radiation

= Two basic ways to model chemotherapy combined with radiation
= Independentaction
Chemo-only survival Radiation-only survival
¥ P4
0S =CS +RS(1—CS)

chemo equals a dose of X GyE
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= Two basic ways to model chemotherapy combined with radiation
= |ndependentaction | T

Chemo-only survival  Radiation-only survival
I3
OS=CS+RS(1-CS)

chemo equals a dose of X GyE

= Radiosensitization: TCP = f(BED) e | s
- . foxd 2 T Ruscaanzaton
BED Wil (1 Yam) o Ty i

Radiosensitization factor: ~ f,

Application — muscle-invasive bladder cancer

= modeling all published results of RT and chemo-RT in muscle-invasive bladder cancer
= Used linear-quadratic model to fit radiation only

RT only: Chemo-RT: additive effect only Radiosensitization
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13 studies 27 trials

7~ 36Gyin
2Gy/fx
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Plataniotis et al. (2014)
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Overview over Clinical Studies

= Additive Effects:
* Head and Neck: 7-12 Gy
= Anal Cancer: 4-8 Gy
= Cervical Cancer: 0.5-8 Gy
= radiosensitization factors: 1.2-1.35 in pancreas & bladder
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Overview over Clinical Studies

= Additive Effects:
= Head and Neck: 7-12 Gy
= Anal Cancer: 4-8 Gy
= Cervical Cancer: 0.5-8 Gy
= radiosensitization factors: 1.2-1.35 in pancreas & bladder
= Main Challenge: low “dimensionality” of clinical outcome data
makes fitting of complex models difficult ~ additiveeffect only Radiosensitization

casaion

Overview over Clinical Studies

Additive Effects:

* Head and Neck: 7-12 Gy

= Anal Cancer: 4-8 Gy

= Cervical Cancer: 0.5-8 Gy
radiosensitization factors: 1.2-1.35 in pancreas & bladder
Main Challenge: low “dimensionality” of clinical outcome data
makes fitting of complex models difficult

One solution: use the whole survival
curve, or even patient-level data to
inform models

dynamic models of clonogenic growth
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Dynamic Models of Clonogenic Growth

= formulations usually based on ordinary differential equations
= Tumor growth: Gompertz
= Radiation cell kill: Linear-Quadratic: SF = e

-(ap+o0?)

= Chemo cell kil: Log cell kil SF = ¢ (3P®)

an _ rN(t)Iog[ K J_ QC(r)N(r)—(aD+bD2)N(f) | Treagent
dt N(2) \
L J )L ' \ ~
N . Gompertz
o e [EEE \ /e
) J 1 ” \
Gompertz LOG cell kill Linear Quadratic ®oem
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Radiotherapy only model

Survival fraction  Patient Survival

distribution after RT only

Natural disease course —
Tumor growth and
patient death model

RTOG 8808
nly

sequential
chemo-
radiation
(RTOG 9410)

chemo-only
trials.

Radiotherapy only model

—

Survival fraction  Patient Survival
distribution after RT only

RTOG 8808

radiation-only
trials.

-

Natural disease course —
Tumor growth and
patient death model

sequential
chemo-
radiation
(RTOG 9410)

chemo-only
trials

Cell number

Chemotherapy only model

Cell number

concurrent chemo-radiation
model

1

Chemotherapy only model

Days

Concurrent vs Sequential CRT

= |dea: to combine radiation-only & chemo-only models = derive in-vivo
radiosensitization factor

—a— Sequential CRT
—+— Concurrent CRT

Clinicalitrials

Auperin et al

T3
Years

> 102010
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Concurrent vs Sequential CRT

Idea: to combine radiation-only & chemo-only models = derive in-vivo
radiosensitization factor

= Difference between concurrent and sequential explained by shorter treatment time

4 Sequential CRT 1o
7 Concurrent CRT

—s— Sequential CRT
—=— Concurrent CRT

Clinicalirials

Survival

(@) o Auperin etal
T 1002010

Concurrent vs Sequential CRT

Idea: to combine radiation-only & chemo-only models = derive in-vivo
radiosensitization factor

= Difference between concurrent and sequential explained by shorter treatment time

-> stratify the patients by growth rate results in variable difference between
sequential and concurrent CRT imedian VDT: 125 days

—4- Sequential CRT
~=- Concurrent CRT

Model

volume doubling time [days]
survival benefit concurrent vs sequential at 5 years

© top quartile 14.1%
007 bottom quartile 0.9%
vears
M : v

Concurrent vs Sequential CRT

Idea: to combine radiation-only & chemo-only models = derive in-vivo
radiosensitization factor

Difference between concurrent and sequential explained by shorter treatment time

-> stratify the patients by growth rate results in variable difference between
sequential and concurrent CRT

provides a framework for the optimization of combined chemo-radiation

scheduling and sequencing, and can include other modalities, such as targeted
agents

7/31/2018
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Introduction / Motivation

Modeling chemotherapy combined with radiation
= Overview

= TCP based modeling — population data

= Dynamic Models of Clonogenic Growth

Modeling targeted agents combined with radiation
= Growth Modeling

= Resistance Modeling

= Conclusion & Discussion

Lin et al. Trends in Cancer
2016, Vol. 2, No. 7

Targeted Therapy
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Targeted Therapy
Very successful in Non-Small Cell Lung j
Cancer (NSLC) EE
Main oncogenic driver mutations for 3o
which FDA-approved inhibitors exist: E =
EGFR & ROS/ALK L
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Pao et al. Nature Reviews 2010

chemo; not IV in cycles, but daily oral uptake
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Targeted Agent Effect Models

= Similar to chemo, but need something additional = resistant sub-populations
= Modeling more sensitive to exact growth models

exponential growth is bad approximation over long time periods

more realistic growth models exhibit decreasing growth rate with increasing tumor size

most popular: Gompertz, Logistic

ar) _ ) _
& r@t)V () o

-rir(r) Gompertz

Targeted Agent Effect Models

= Similar to chemo, but need something additional = resistant sub-populations
= Modeling more sensitive to exact growth models
= Resistance development
= Develops in vast majority of cases
= Mathematical formulation based on work in bacteriology (Luria & Delbrueck)
= Used stochastic processes with a differentiation hierarchy to represent sensitive & resistant cells

a Treatment
N ’
Smoren 2 monta Wi

Waclaw et al. Nature 2015
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Modeling Resistance

= Pre-Existing Resistance

radiographic recurrence

TKI
exposure
— % - —

K@) rowth in

» T N(1)log—~ e

Q TKl-sensitive ~ dN(t) _) 2 gNJ(/) absence of drug
population Ng dt K(r) celllossin

~bH NG O presence of drug

% Tki-resistant - dN,() ., ()log K(f) growth independent of
= 1N,

population Ny dr N0 presence of drug
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Modeling Resistance

= Pre-Existing Resistance

= Acquired Resistance (Persister-Evolution)
radiographicrecurrence

Je, 4J:l =
i S N
LT

exposure

(= IN,,
T persister aNy() _ (P> R)-N, (1) transition to
population Ny g resistant cells

k(@) growth independent of
Thiresistant dN,() | T NeO109 5
population Ny g

N()  presence of drug

+#(P—>R)-N,(r) transition from
( )-N:() persister cells

Modeling Resistance — Tumor Growth Trajectories

= stage IV NSCLC patient
= treated with erlotinib (EGFR-TKI)
= PFS~4m

Ao
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Modeling Resistance — Tumor Growth Trajectories

Persister-Evolution Model:
maximum persister population

pre-treatment

P AV

0days
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Modeling Resistance — Tumor Growth Trajectories

Patient 2: 8.7m PFS Patient 3: 36.3m PFS
A L0G scale B L0G scale

b § CT messuremens|

log cell number

og cell number

5060 T4 700 20 O W0 W00 00 7000 750 3000 Fa0
time [days] time Idavs]

= We can estimate the number of persister/resistant cells during therapy
= Why are we doing this?

Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease

Concurrent chemoradiation (CRT) 60-74Gy
e @ @ & &
ragaton NI 1ML HONDL OAY HORRE

WA TARVARD
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Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease
> NCT01553942 — the ASCENT trial

hemo @ @ & & &
radaven ML N0 OO 10N HRORE
raciacion (I D TNE 1RE- MO
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Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease
= Application: to find optimal induction lengths for stage Il patients (patient-specific?)

Short Responder Medium Responder Long Responder
P—
CRT
h
H
| i
} \ i )
| 1
«— | CRT
i
|
<

m Time toprogression: 43m M Time o progression: 12m M Time to progression: 36m
) CRT optimalafter:Sweeks M CRT optimal after: 14 weeks WM CRT optimal after: 24 weeks

Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease
= Application: to find optimal induction lengths for stage Il patients (patient-specific?)

= Maintenance therapy

+TKI
» o ® @ @ @ & | maintenance
Xweeks TKI inducti
. MEekTtineteton . aciation I MR ANRE 0RRE 100 until
progression

LOG scale

= TKI Induction: TKI serves as clonogen
reduction to aid chemo-radiation

= TKI maintenance: chemo-radiation should
be employed to minimize resistance
development

= similar to oligometastatic disease

Take aways — chemo-radiation modeling

= 2 main ways to see chemo-radiation when analyzing clinical
data: spatial Vs. in-field cooperation

additive action vs. radiosensitization
usually you go into data-analysis with a pre-existing assumption
Not the case for in-vitro / preclinical models (interaction via cell-cycle dynamics,
inhibition of repair pathways, ...)
standard biostatistical outcome analysis always a good idea
= Difference chemotherapy/RT modeling
= RT: modeled continuously, linear-quadratic model
= chemotherapy: modeled binary, no dose-dependence

7/31/2018
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Take aways — targeted agent modeling

Combining RT with targeted agents requires new approaches & extended

models

= Growth — realistic growth models due to longer time frames

= Resistance — emergence of completely resistant sub-populations

shifting aims — is the purpose of the RT regimen either to

= maximize cell kill OR

= minimize resistance development (to EGFR/ALK/ROS inhibitor)

Essential for their inclusion in stage Ill, raises interesting question/trade-off:
= is RT there to support the agent or the other way round?

the extent of molecular sub-typing will inhibit clinical trials for every

indication & combination
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