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[1] Gallasclet al. 2013, Journal of Clinical Bioinformatics 2:2¢
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Prevalence of ConcurreherapyA potential for Targeted Agents + |

A Patients treated with combined chemnadiation

Targetable

mutation:
total)

Breast 234 (14.1) 25% HERZ,mTor, COK4I6

Lung 221(13.3) 29% EGFR, ALK, ROS, VEGF(R2), MET.
PD1

Colon 93(5.6) 20% VEGH(R2) EGFR KITIRAF

Bladder 74(4.5) 30%** Possibly EGFR, FGFR3,mTOR |
PIKACA, RAS,

Non-HL 72(4.3) 2% CD20730, PIaK

Uterine corpus 55(3.3) 12%** VEGF

Head and Neck 46(2.8) 30%* EGFR, PI3K, Notch

Rectal 40(2.4) 12% VEGF(R) EGFR KITRAF

Total 835 (50.4) 26%

T CE

Modeling Therapy
A Two typical methods to develop a mathematic model

Which approach is
bott h top-dows h .
prilavibe ot [ s advisable depends on the

research question and
available data at hand, but
generally itis assumed
that:

concuusing Concuusens

Grassberge Paganettj PMB 2016

Types of Modeling Approaches

Acg2 ¢l ESa¢ 2y 6KAOK Y2RSta Oly o
A General<> SiteSpecific
A Phenomenological -x Mechanistic
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A Models parameterized using
A in vitro data
A clinical patient data

ool Mechanistic

Grassberge& PaganetiPMB 2016




Types of Modeling Approaches
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A in vitro data
A clinical patient data

A Focus on clinical applicability clinical data i
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A phenomenological models based i

on outcome data

Types of Modeling Approaches
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A General <> SiteSpecific
A Phenomenological -x Mechanistic

;W s i  Povencans |
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A Models parameterized using
A in vitro data
A clinical patient data

L D—

A Focus on clinical applicability i

A phenomenological models based
on outcome data

okl e+ Mechanistic

Grassberget PaganettiPMB 2016
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A Two basic ways of thinking about cooperation
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A Independent action
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A RadiosensitizatioCP = f(BED) o —
i [ ]
P N ——
BED =D (1 Pap) W . -

Radiosensitization factor: ~ f,
[ —

Applicationg muscleinvasive bladder cancer

A modeling all published results of RT and chétiidn muscknvasive bladder cancer
A Used lineaquadratic model to fit radiation only

RT only: ChemeRT: additive effect only Radiosensitization

13 studies 27 trials

" 36Gyin
2Gyfx

sana @n €26y
rap3ien Fwrien

Plataniotiset al. (2014) OS=CS+RS(1—C)|| BED = f.D- x

1JROBP T, @t




Overview over Clinical Studies

A Additive Effects:
A Head and Neck-12 Gy
A Anal Cancer:-8 Gy
A Cervical Cancer: 085Gy
A radiosensitizatiofiactors: 1.21.35in pancreas bladder

Tobie's. Quaincd hara
Source S Efecipe
Piataniois s Dale (3008) Cervin Indeunders acten
Kbl ot o 2007

Fmcress
Platasiots od Dale (2014) Blades

ensenshizaton fucts of 13
Dt s Pacen Gy
Hardey ot al (010) Hea and seck b 133 G o tumee anid 6.4 Gy
013 Hiead 4 sk
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Overview over Clinical Studies

A Additive Effects:
A Head and Neck-12 Gy
A Anal Cancer:-8 Gy
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A radiosensitizatiofiactors: 1.21.35in pancreas: bladder
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Overview over Clinical Studies

A Additive Effects:
A Head and Neck-12 Gy
A Anal Cancer:-8 Gy
A Cervical Cancer: 6&Gy
A radiosensitizatioffiactors: 1.21.35in pancreas bladder
AalbtAy [ KItt8yasdy t26 aRAYSyarzylt
makes fitting of complex models difficult

A One solution: use the whole survival

! |, Treamenc
curve, or even patiedevel data to \
inform models \ ~
. ) _ \ Gompertz
A dynamic models aflonogenigrowth . \ Grouth




Dynamic Models dflonogenic&rowth

A formulations usually based on ordinary differential equations

A Tumorgrowth: Gompertz DabD?
i - (aD+.
A Radiation cell kill: Line@uadratic: SF = e (= )

A Chemo cell kill: Log cell KISF = & (4P®)

7/31/2018

| Treatment

Gompertz
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Modeling
Multi-
Modality
Therapy
for NSCLC

Survival of
untreated patients

Stage |
Natural disease course i
Stage Il Tumor growth and
patient death model
Mode“ng Radiotherapy only model
Multi- T
Modality
Therapy ; | fracti Patient Survival
urvival fraction atiel urvival
for NSCLC distribution after RT only.
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Radiotherapy only model

Survival fraction  Patient Survival

distribution after RT only

R

TOG 8808

radiiation-only

.| T Chemotherapy only model

2
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y radiation =
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Tumor growth and [
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? trials Days

Radiotherapy only model

concurrent chemo-radiation
model

—

Survival fraction  Patient Survival

distribution after RT only

RTOG 8808
radiation-only

trial

- 1

T Chemotherapy only model
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Tumor growth and |
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ConcurrentvsSequential CRT

A Idea: to combine radiatieonly & chemeonly modelsh derive invivo
radiosensitizatiofiactor

—a— Sequential CRT
—+— Concurrent CRT

Qiinical trials

d o Auperinet al

T — Jco 2010

T3
Years
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A Idea: to combine radiaticonly & chemeonly modelsh derive invivo
radiosensitizatiofiactor
A Differencebetween concurrent and sequential explained by shorter treatment time
1o —a- Sequential CRT 10 —a— Sequential CRT
Concurrent cRT Concurrent cRT
o Model o Qinical trials
” Auperinet al.
00— JCO 2010
MED o
ConcurrentvsSequential CRT
A Idea: to combine radiationnly & chemeonly modelsh derive invivo
radiosensitizatioffiactor
A Differencebetween concurrent and sequential explained by shorter treatrtiget
A stratifythe patients by growthate results irvariable difference between
sequential and concurre@RT imedian VDT: 125 days
104 -a- Sequential CRT
K Concurrent CRT
o Model
g volume doubling time [days]
0 o o survival benefit concurrent  vs sequential _at 5 years
o2 P G top quartile 14.1%
ok — " ou bottom quartile 0.9%
vears
T CE=
ConcurrentvsSequential CRT
A Idea: to combine radiatieonly & chemeonly modelsh derive invivo
radiosensitizatiofiactor
A Differencebetween concurrent and sequential explained by shorter treatrtime
A stratifythe patients by growthate results irvariable difference between
sequential and concurre@RT
A provides a framework for the optimization of combined cheauiation

ConcurrentvsSequential CRT

scheduling and sequencing, and can include other modalities, such as targeted

agents
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TargetedTherapy
A Very successful Mon-Small Cell Lung j
Cancer (NSLC) E =
5o
iy doiias dosaswd )
- = e e m oo
s e T )
Pacet al. Nature Reviews 2010
MEDICAT sy LE :
TargetedTherapy
A Very successful Mon-Small Cell Lung j
Cancer (NSLC) E .
A Main oncogenic driver mutations for 3=
which FDAapproved inhibitors exist: & =
EGFR & ROS/ALK L

ominaion | Aaium i | Gaiting
i ubles  doublesied
) ) D i,
@cad noe @06

A better toxicity profiles

Lin et al. Trends in Cancer

Gonb | Gatnb
[ )
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R om
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Paoet al. Nature Reviews 2010

| A different mode of administration to
2016, Vol. 2, No. 7 chemo; not IV in cycles, but daily oral uptat
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Targeted Agent Effect Models

A Similar to chemo, but need something additioatesistant sukpopulations

A Modeling more sensitive to exact growth models

A ial growth is bad

A more realistic growth models exhibit

over long time periods

A most popularGompertz Logistic

dt

V) %:rx(t) Somperz

growth rate with tumor size

Laird 1964

Targeted Agent Effect Models

A Similar to chemo, but need something additioatesistant sukpopulations

A Modeling more sensitive to exact growth models
A Resistance development
A Develops in vast majority of cases

A Mathematical formulation based on work in bacteriology (Luiefrueck

A Used stochastic processes with a hierarchy to

Treatment

P sensitive & resistant cell

Waclawet al. Nature 2015

Modeling Resistance

A PreExisting Resistance

TKI

radiographic recurrence

I
exposure
- % - -

K(t) growth in
15N (t)log—-=
(s TKisensitive dNg(t) _J '® s()Ogms(t) absence of drug

opulation

pop Nt - b N(t)log K(t) celllossin

s N(t) Presence of drug
i dNL(t K(t) growth independent of

% TKiresistant (1) _ 1 ANo(t)log ()

population N, dt Na(0) presence of drug
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Modeling Resistance

A PreExisting Resistance
A Acquired ResistancBérsistesEvolution)

radiographic recurrence

TKI
exposure

transition to

Q Pt dNP(t): P~ RGN resistant cells

population N gt

K(t) growth independent of

Tiiresistant dNg(t) _ [N (()Iog Nq(t) presence of drug
population M~ gt H(P- R)ON,(t) Uransiton fom
P persistercells
) HiEbithEscnooy  WEEEIRER

Modeling ResistanaeTumor Growth Trajectories
A stage IV NSCLC patient
A treated witherlotinib (EGFRTKI)
A PFS~4m

A Joss 13days
prereament pre-eatment

[ginbdaysl _Erouniday 107

) T4

Enginibday 163 _Eroiinibday 218

93
)

)
s

Modeling ResistanagTumor Growth Trajectories

Evolution Model: | "7 / =
ister population -
AV

f recurence 2., recurence

Persister
maximum

A procamen  preteatment

0

_JL

Eciginiy uaj 153 mn inibday 218 1

: g
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Modeling ResistanegTumor Growth Trajectories

Patient 2: 8.7m PFS Patient 3: 36.3m PFS
A L0G scale B L0G scale

[ 67 remsuremeia] ¥ b T messurements

|

recurience

recurrence

log cell number

og cell number

10" —s0 g T 700 25 W0 %A T
time [days] time [davs]

A We can estimate the number pérsistefresistant cells during therapy
A Whyare we doing this?

— W L

Rationale for Modeling

Targeted agents currently only used in a stage IV setting
Targetable mutations also exist in stage Il disease

Concunenthemoradiatior(CRT) 674Gy
Chemo @ @ ® & &
Radiaton I 1IN0 10NIL ORY HORLE

> >

WA TARVARD
27 MEDICAL SCHOOL

Rationale for Modeling

A Targeted agents currently only used in a stage IV setting
A Targetable mutations also exist in stage Ill disease
A NCT01553942 the ASCENI(Fial

Chemo @ ® & & &
Ragiaton  IIIE N0 N0 10N HRO0E
Radiation (11 L FHHNE 10000 0000

WA TARVARD
27 MEDICAL SCHOOL
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Rationale for Modeling

A Targeted agents currently only used in a stage IV setting
A Targetable mutations also exist in stagditiéase
A Application: tdind optimal induction lengths for stagepiéitients (patientspecific?)

Short Responder Medium Responder Long Responder
—
CRT
i
— CRT

= !
|
Ld

) Time to progression: 4.3m = Time to progression: 12m  mp Time to progression: 36m
m) CRT optimal after: @ weeks mp CRT optimal after: 14 weeks mp CRT optimal after: 24 weeks

¥ L - F

Rationale for Modeling

A Targeted agents currently only used in a stage IV setting
A Targetable mutations also exist in stagdiiéase
A Application: tdfind optimal induction lengths for stagegiéitients (patientspecific?)
A Maintenance therapy
+TKI
wmor | [esridinaieior (e ) T S T S Yo |
progression

LOG scale

A TKI Induction: TKI servescksnogen
reduction to aid chemaeadiation

A TKI maintenance: chemradiation should
be employed to minimize resistance
development

A similar

Takeaways; chemoradiation modeling

A 2 main ways to see cherradiation when analyzing clinical
data:spatial VS, in-field cooperation
additiveaction vs.  radiosensitization
A usually you go into datanalysis with a prexistingassumption
A Notthe case for irvitro / preclinical modelénteraction via ceitycle dynamics,
inhibition of repair pathway% 0
A standardbiostatisticabutcome analysis always a good idea
A Difference chemotherap®RT modeling
A RT: modeledontinuouslylinearquadratic model
A chemotherapymodeled binary, no dosgependence
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