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WHY DO WE NEED AI?

WHAT Al CAN DO FOR US?

HOW WELL CAN Al DO OUR JOBS?

WHEN GENERAL Al WILL BE AVAILABLE?




WHY DO WE NEED AI?

I'm too busy to
tell people how
busy | am.
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Approximately 1 in 3 Health Care Dollars is Waste
Can We Afford This?

‘Current medical practice is evidence-based

Clinical experience &
judgement

Sakett et al, BMJ 312, 71-72, 1996
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Problems and concerns with current EBM

Quality of the evidence
Hypocognition

Care provider dependent
Efficiency & cost (not only the healthcare delivery
process....)

Lag between when the RCT is conducted and when its
results are published/adopted

Not individualized

Human cognitive capacity???
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HOW WELL CAN Al DO OUR JOBS?
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Al-aided image analysis, reconstruction, super-
resolution imaging, and tumor target segmentation
Autonomous treatment planning driven by deep learning

RT delivery guided by multiple layers of neural network

Al-aided clinical decision-making, toxicity and survival
prediction
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v' Al-facilitated QA
v" NLP auto-annotation and clinical notes transcription
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Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy

in Retinal Fundus Photographs
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Segmentation of organs-at-risks in head and neck CT images using
convolutional neural networks

Bulat Ibragimov* and Lel Xing
Stanjord U Schoo! of Medicine, Stanfrd s
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published 13 February 2017)

o Koo sl sk e L0 i s i i i

radiation therapy for head and neck (Ha

learning-based algorithm, for segmentat l

mance against stae-of-the-art automated z i

serves variabily. z R
‘Convolutional neural network: .

used to study consisicnt iniensity paterns
in & peeviously unsees test CT image. For
tive intensity patches around voxels that b
ative inteasity patches around voxels thi
passed through a seauence of CNN lave

T Y —




Autonomous treatment
planning for RT
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Kahn, Fahimian et al

M. Ma, Y. Yang et al
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toward real-time
volumetric MRI with deep |
learning

of Jhong Wang

From-population-average nomogram to ﬁ\’ >

deep learning-based toxicity prediction
— B. Ibrimbrov, D. Toesca, D. Chang, A Koong, L Xing

Current approach:
(i) radiomics;
(ii) NTCP/TCP types of modeling

Machine learning-based toxicity/survival prediction




Deep dose analysis: combined

Multi-path network: 1) 3D CNN for dose plan; 2) fully-connected path for
features

Neural network

Convalutional path

W22 15512020

Fully-connected path
Demographics 3
Liver function

Treatment features | pu—

Pathologic features
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Predicted SBRT outcomes
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Visualizing the invisible soft tissue target

Lateral(90°) AP(0°)

Oblique(135°)

Zhao W, et al, RADIOLOGY,
Submitted, 2018

WHEN GENERAL Al WILL BE IN THE CLINIC?
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SUMMARY

- APPLIED Al WILL SIGNIFICANTLY
IMPROVE EFFICIENCY, QUALITY, AND
REDUCE HEALTHCARE COST.

- WE ARE MARCHING INTO AN AGE OF
GENERAL Al.

- MEDICAL PHYSICISTS SHOULD PLAY A
MAJOR ROLE IN Al TECHNOLOGY.
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