Molecular Imaging and Targeted Cancer Therapy

Novel Molecular Imaging Techniques to Personalize Cancer Treatment
AAPM Annual Meeting, August, 2018

David A. Mankoff, MD, PhD
Department of Radiology
University of Pennsylvania

work supported by NIH Grants CA42045, CA12457, S10 RR17229; Komen SAC140060, DOE DE-SE0012476, Penn Basser Center

Thanks to ECOG-ACRIN, NCI CIP/QIN; Amy Clark, Farrokh Dehdashti, Amy Fowler, Geraldine Gebhardt, Ken Krohn, Lillie Lin, Hannah Linden, Bob Mach, Mehran Makvandi, Bob Nordstrom, Austin Pantel, LilaRahab Unterricht, Michelle Hauer, Matt Schuler, Fiona Sternlieb, Jennifer Specht, Gary Ulaner

Disclosures
- Consultant/SAB
 - GE Healthcare
 - Philips
 - ImaginAb
 - Reflexion
 - Blue Earth Diagnostics
 - Zionexa
- Research Funding
 - Siemens

Current Clinical Use of Molecular Imaging:
Cancer Detection and Staging

\[^{18} \text{F} \]FDG PET/CT Breast Cancer Staging
(Eubank, J Clin Oncol. 9:3618, 2001)

\[^{18} \text{F} \]Fluciclovine PET/CT Prostate Cancer Re-Staging
(Schneider, Radiology 261: 838, 2011)
Beyond Detection:
Molecular Imaging is a Cancer Biomarker that can Guide Targeted Therapy

- Measuring therapeutic target expression
- Assessing target engagement by drug therapy
- Measuring early therapeutic response
- Predicting therapeutic outcomes: DFS, PFS, OS

Molecular Imaging Biomarkers
Biologic Factors Affecting Tumor Behavior

Surface Receptors
SSR, HER2

Nuclear Receptors
FES, FDHT, FFNP

Angiogenesis
Water, RGD

Proliferative Rate
Thymidine & Analogs, Sigma-2

Cancer Metabolism
FDG, Glutamine

Hypoxia
FMISO, EF-5

DNA Repair
PARP (FTT)

Drug Transport
MIBI, Verapamil

Molecular Imaging to Guide Therapy:
Outline

- Clinical/biological questions and methods to address them
- Molecular imaging and targeted cancer therapy
 - Measuring the target
 - Assessing target engagement
 - Early response assessment
 - Predicting therapeutic outcomes
 - Future Directions
Targeted Breast Cancer Therapy: The Estrogen Receptor (ER) and Endocrine Treatment

Endocrine Therapy Response Rate:

<table>
<thead>
<tr>
<th>ER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>< 5%</td>
</tr>
<tr>
<td>+</td>
<td>50% - 75%</td>
</tr>
</tbody>
</table>

(Mintun, Radiology 169:45, 1988)

ER Concentration (fmoles/mg protein)

Tumor Uptake (%ID/mL x 10^-4)

18F-Fluoroestradiol (FES): PET Estrogen Receptor (ER) Imaging Provides a Quantitative Estimate of ER Expression

Kieswetter, J Nucl Med, 1984

Peterson, Mol Imag Biol 16:431, 2014

18F-Fluoroestradiol (FES) PET Images ER Expression in Breast Cancer

Patient A
Biopsy = ER+

Patient B
Biopsy = ER-

Patient A
Patient B
Is the Target Present?
FES Uptake Predicts Breast Cancer Response to Hormonal Therapy

Example 1
- Recurrent sternal lesion
- ER+ primary
- Recurrent Dz strongly FES+

Example 2
- Newly Dx’d met breast CA
- ER+ primary
- FES-negative bone mets

Excellent response after 6 wks Letrozole
No response to several different hormonal Rx’s

University of Washington
(Linden, J Clin Onc, 24:2793, 2006)

ECOG-ACRIN Biomarker Trial of FES PET: EAI142
Dehdashti & Linden

MBC from ER+ Primary

Endocrine Therapy

Validation Aim
Response PFS 3, 6 month assessment

Primary Aim

- First line therapy
- Stand-alone imaging trial:
 – Clinical indication for endocrine therapy
 – Standard Rx allowed (AI, FUL, TAM)

FES PET

Heterogeneity of Target Expression
FES PET Imaging of ER Expression

Circulating Tumor Cells (CTCs) & ER Assay
Erica Carpenter, U Penn
Imaging Other Steroid Receptors

Progesterone Receptor: ¹⁸F-FFNP PET/CT
Breast Cancer Primary and Nodal Sites

Androgen Receptor: ¹⁸F-FDHT PET/CT
Metastatic Prostate Cancer

HER2 and HER2/HER3 Expression

HER2:
⁹⁹Zr-Trastuzumab

HER2/HER3:
⁹⁹Zr-pertuzumab

Fluorthanatrace ([¹⁸F]FTT): PARP-1 in Ovarian Cancer

(Makvandi...Lin, J Clin Invest, 128:1727, 2018)
Molecular Imaging to Guide Therapy: Outline

- Clinical/biological questions and methods to address them
- Molecular imaging and targeted cancer therapy
 - Measuring the target
 - Assessing target engagement
 - Early response assessment
 - Predicting therapeutic outcomes
- Future Directions
Serial FES PET Measures Endocrine Therapy Impact on Tumor Estrogen Binding
Incomplete ER Blockade by Fulvestrant Compared to Tamoxifen
(Linden, Clinical Cancer Res, 17:4799, 2011)

FES Applied to Dose Determination for New ER-Targeted Agent: GDC-810 (SERD)
Wang, Clinical Cancer Res 23:3053, 2017

[^F]FT: PARP1 Occupancy Study in Ovarian Cancer
Study PI: F Simpkins
Imaging PgR as a Marker of ER Activation

Pre-Estradiol FFNP-PET/CT

\[\text{SUV}_{\text{max}}: 3.0 \]

Post-Estradiol FFNP-PET/CT

\[\text{SUV}_{\text{max}}: 8.6 \]

(Farrokh Dehdashti, Washington University)

Adaptive Radiotherapy Targeting: RTOG 1106/ACRIN 6697
Sprang Kong, Dan Pryma

Molecular Imaging to Guide Therapy:
Outline

- Clinical/biological questions and methods to address them
- Molecular imaging and targeted cancer therapy
 - Measuring the target
 - Assessing target engagement
 - Early response assessment
 - Predicting therapeutic outcomes
- Future Directions
Early Changes in FDG Uptake in Response to HER2-Targeted Therapy Predict Response

Metabolic Responder: Achieved pCR

Metabolic Non-Responder: No pCR

TBCRC 008, Connolly, J Nucl Med 56:201, 2015

Biologic Events in Response to Successful Cancer Therapy
Rationale for Measuring Early Response by Cell Proliferation Imaging

Rx → Cellular Proliferation or Cell Death → DNA Synthesis

↓ Viable Cell Number

↓ Tumor size

Thymidine Incorporation Pathways
Imaging Tumor Proliferation

(Moskoff and Eary, Clin Cancer Res 14: 7139, 2008)
ACRIN 6688: FLT PET Measures Breast Cancer Response 1 Week After Chemotherapy

Best ΔSUVmax cut-off for predicting pCR = -51% (sensitivity 56%; specificity 79%).

(Kastaloglu, J Nucl Med, 2015)

FDG and Thymidine PET Response to NSCLC Chemoradiation

FLT PET Monitors Response of NSCLC to Chemoradiotherapy
Everitt, IJROBP 75: 1098, 2009
Molecular Imaging to Guide Therapy: Outline

- Clinical/biological questions and methods to address them
- Molecular imaging and targeted cancer therapy
 - Measuring the target
 - Assessing target engagement
 - Early response assessment
 - Predicting therapeutic outcomes
- Future Directions

Breast Cancer Bone Metastases
Response to Therapy? ???!!

Pre-Rx Post-Rx

Bone Metastasis Response Monitoring
FDG PET: Response? - Yes!

Pre-Rx Post-Rx
Prospective Trial of FDG PET to Predict Outcomes in Bone-Dominant Breast Cancer, PERCIST Criteria
(Peterson...Specht, J Nucl Med, epub, 2018)

FDG PET/CT Measures Bone Metastasis Response to Endocrine Therapy at 4 wks
Korhonen...Clark, RSNA, 2017

Pre-Rx 4 wks Rx

Molecular Imaging to Guide Therapy: Outline
- Clinical/biological questions and methods to address them
- Molecular imaging and targeted cancer therapy
 - Measuring the target
 - Assessing target engagement
 - Early response assessment
 - Predicting therapeutic outcomes
- Future Directions
Molecular Imaging and Targeted Therapy: Summary

- Molecular imaging, beyond staging, is a powerful tool for directing cancer therapy
- Molecular imaging can:
 - Measure target expression
 - Measure drug delivery and target engagement
 - Measure response, early
 - Predict outcome
- Success requires a framework for clinical trials to test and validate these tools
Acknowledgements

Grants
- P01CA42045, CA12457, S10 RR17229, U01CA148131, U01CA190254, P50CA138293, Komen SAC140060, DOE DE-DE-SE0012476, Penn Basser Center

Organizations
- ACRIN/ECOG-ACRIN, NCI CIP, NCI QIN

University of Pennsylvania
- Amy Clark, Joel Karp, Katrina Korhonen, Bob Mach, Mehran Makvandi, Elizabeth McDonald, Austin Pantel, Dan Pryma, Mitch Schnall, Fiona Simpkins

Others
- Farrokh Dehdashti, Amy Fowler, Geraldine Gebhart, Lale Kostakoglu, Ken Krohn, Lillie Lin, Hannah Linden, Robert Nordstrom, Lanell Peterson, Joseph Rajendran, Jennifer Specht, Gary Ulaner