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Radiomics Certificate, AAPM 2018

Introduction to radiomics — including radiomics features and statistics

Machine learning for radiomics — intro to machine learning, deep
learning

Convolution neural nets — including radiomics case studies
Deep learning lab (NVIDIA) — hands-on experience

N

Radiomics proffered abstracts — 12 radiomics papers
Deep learning with medical images — including 1-hour hands-on lab
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REMINDER: Lab for Rad g Bring your laptop (fully charged!!)

Introduction to Radiomics

* Introduction to radiomics — Laurence Court, University of
Texas MD Anderson Cancer Center

+ Radiomics features — Xenia Fave, University of California
San Diego

+ Statistics for radiomics - Shouhao Zhou, University of
Texas MD Anderson Cancer Center

University of Chicago 1994 for
Computer-Aided Detection

LODWICK,G. S, et al 1963. The coding of Rontgen images
for computer analysis as applied to lung cancer, Radiology
81(2), 185-200

Photograph (1994) courtesy of Maryellen Giger




Learning Objectives

1. To introduce the goals and objectives of radiomics research
2. To describe where radiomics research is today

3. To understand the workflow when using quantitative image features

for radiomics research
4. To understand the key statistical techniques used in radiomics
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nature
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Decoding global gene expression programs in liver
cancer by noninvasive imaging

Ooi', Adam § Adler®, Jeremy Gollub®, Xin Chen®, Bryan K Chan’,
ward Y Chang® & Michacl D Kuo

Eran Segal', Claude B Sirlin®
George R Matcuk”, Christop

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 6 JUNE 2007

Imaging features and radiomics

« Radiologists identified 138 different imaging traits on contrast-CT scans of

hepatocellular carcinomas (n=28)

* Filtered traits based on reproducibility and independence (->32)
« Searched for associations between expression of 6,732 genes (clustered)

(microarray analysis) and combinations of imaging traits.

Examples from . Sega et al. Decoding
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* Number of regions of
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28 imaging traits could reconstruct 78% of
gene expression profile (116 modules)
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« Appearance is somehow related to tumor phenotype — and related § o s
outcomes £ g
« Performed non-invasively { o &
« Provides a 3D picture of the entire cancer ? o) 2
« Already performed in clinical practice B
o $
+ Multiple times during treatment for diagnosis, staging, radiation o = g
oncology planning, response assessment ¥ iia T MGR

Captures the cancers appearance over time (delta radiomics) and space

f imaging for
Proves the cancer at the macroscopic level

Can be qualitative not quantitative

Patient heterogeneity — means we need lots of data

Heterogeneous acquisition protocols

+ Comparisons between patients difficult Siemens B30f Siemens B70f
+ Comparisons between same patient in time difficult

Data from Dennis Mackin, 2018
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So, what is radiomics?

Hypothesis: Quantitative image features are
related to underlying gene expression and

phenotype

Goals:

« To provide a comprehensive
quantification of the phenotype of the

tumor

« To provide patient-specific predictions of
their “outcome” given a specific treatment

The outcome could be genetic
expression, treatment response
(pathology), overall survival,
freedom from metastases, ........

General Radiomics Hypothesis: Quantitative image features are related to underlying gene
expression and phenotype

Classifying Tumors *Patient stratification in order to decide on alternative G
* Benign v. Malignant, Wang treatments
2010
* SCCv. ACC, Basu 2011 *Analysis of heterogeneity within and across lesions jcon Virtual
assess vorying ptor status, Biopsy
Links to Genomics
*Early prediction of treatment response o
« K-ras mutant, Weiss 2014 +Basis for modifying therapy o
« MAPK pathway, Miles 2016
*Monitoring for Treatment Efficacy L
Predicting Outcomes T
o Aerts 2014 oL dinal and eval {can be done before. Fonn
« Fried 2015 then after treatment, substituting for longitudinol tissue biopsy)
Buckler, et o, A Collaborative Enterprise for Multi-Stakeholder Partiipation in the Advancement of
Quantifative imaging, Rodiology 258:906-914, 2011
« Fave 2017

Based slides from Xenia Fave and Ed Jackson

Radiomics workflow
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Figure adapted from Aerts et al, Nature Communications 2015
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Decoding tumour phenotype by noninvasive
imaging using a quantitative radiomics approach
Hugo JW.L Aerts' 234+, Emmanuel Rios Velaza
Patrick Grossmann’, Sara Carvalho', Johan Bussin
Derek Rietveld”, Frank Hoebers', Michelle M. Rietbergen®, C. René Leemans’
John Quackenbush®, Robert J. Gilies® & Philippe Lambin'

001 10038/ wcemmsood

2+, Ralph TH. Leijenaar!, Chintan Parmar'Z
René Monshouwer®, Benjarmin Haibe-Kains®,

8, Andre Deker’

Decoding the tumor phenotype
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Multivariate Cox proportional hazards regression
model for prediction of survival

Methodology

« Identify stable features

Aerts et al

« Select most stable feature from each feature category
* Multivariate Cox proportional hazards regression model for prediction

of survival
* Four final features:

« Statistics energy — overall tumor density (intensity histogram)

* Shape compactness — compactness of the tumor (shape)

* Grey level nonuniformity — intratumor heterogeneity (texture)

* Wavelet grey level nonuniformity HLH — heterogeneity after decomposing the
image in mid-frequencies (wavelet)
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Prognostic performance

Kaplan-Meer radiorics signature Kapion-Meier rackomics signature

= Metian

Survieat probatibty
prosatity
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Aertsetal

Can we do this with PET images?

* 195 Patients, stage lll NSCLC w/ definitive XRT
« 11 conventional prognostic factors

* MIM PETedge: Semi-automated delineation

* 47 Quantitative Image Features (QlFs) [IBEX]

* Clustering to try to identify multiple risk groups

Clinical model Clinical + imaging model

Fried et al., Radiology 278, 2016

Important features: PET

* COM Energy: Measure of primary tumor SUV uniformity
* Sum(Probability of unique combinations of SUV values between adjacent pixels)

=
Low Energy \ High Energy
Volume = 165 cc Volume = 163 cc
DWD @ 5 months NED @ 24 months

« Solidity: Measure of local-regional disease dispersion
« (Disease Volume/Convex Hull Volume)

Low solidity High solidity
(RLL (RML

Hilar Node paratracheal
Subcarinal) Node)
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Radiomics to determine appropriate treatments

* RTOG 0617 showed no benefit (possible harm) in dose escalation for stage Il NSCLC patients

* What if there are sub-groups of patients that would benefit?

Overall survival High solidity, Low solidity,
(all patients) high energy low energy
(3)” ™y (b)- = (e} =
H z g 3
E L HER
o P — L e
o EEEEE] o 6 2w oM % % 24 Y FE
Tirme: (monttrs) Tirme (months ) Tume ymorths)

Fried et al. IIROBP 94, 368-376, 2016

Predicting Malignant Nodules from Screening
CT Scans

Samuel Hawkins, MS,” Hua Wang, PhD,”" Ying Liu, MD,”" Alberto Garcia, AA,"
Olya Stringfield, PhD," Henry Krewer, BS,” Qian Li, MD," Dmitry Cherezov, M5,”
Robert A. Gatenby, MD,” Yoganand Balagurunathan, PhD, Dmitry Goldgof, PhD,"
Matthew B. Schabath, PhD,” Lawrence Hall, PhD,* Robert J. Gillies, PhD"

Journal of Thoracic Oncology 11(12), 2120-2128, 2016

+ Particular challenge of CT screening for lung
canceris the high detection of 4-12mm
pulmonary nodules — only 3.6% of which are
actually cancers

 Used features that are stable, prognostic and
predictive

+ Used several machine learning algorithms for
classification including:

« Support vector machines (SVMs), random
forest

LS RO Curves for Radom Forests, Yok, and Mcliams o .
30 wavelet 49.96 .
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Kartosis=0.01 Mermmams e 3
30 laws«.0009
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Soisl et g initial screening Falsa posiin e

Journal of Thoracic Oncology 11(12), 2120-2128, 2016

* Hawkins et al achieved accuracies > 90% for some patient groups (low and high risk extreme phenotypes,
around 55% of patients)




Radiomics workflow
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Hosny et al, Artificial intelligence in radiology, Nature Reviews: Cancer, 2018

Deep learning for autocontouring

* Chose 2D approach with VGG-19 architecture

mEE D py

Necessary Modifications: |
3 channel

\ o=
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0-255 range .

add
prediction

Long, Shelhamer, Darrel Fully Convolutional Networks

for Semantic Segmentation IEEE CVPR 2015 Slide from Brian Anderson, MD Anderson
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« Many different tools for feature calculation,
statistics, machine learning etc.
« Court et al, Computational resources for

[ —

radiomics, Translational Cancer Research Confipuration Fim 7
5(4), 340-348, 2016 [S— otfot '
* Larue et al, Quantitative radiomics studies for [P N——

tissue characterization: A review of
technology and methodological procedures,
Brit. J. Radiol. 90, 20160665, 2017

+ 3D slicer/Pyradiomics — Aerts group’s python
library and pipeline

* www.Radiomics.world — Radiomics Quality Score
(Lambin group) ComOuptsson

[rT————— v

o mage, Chrical and Bavmantc Featurms ©
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Stanford radiomics pipeline, courtesy of Sandy Napel

Summary

+ Radiomics image features have potential for:
« Improving risk stratification compared with conventional
prognostic factors
* Understanding genetic expression
« Predicting patient-specific response to treatment (e.g. dose
escalation)
The use of these featuresis:
* Non-invasive
* Routinely obtained images
+ Our understanding s still basic:
* Why do specific image features work? - what are we actually
detecting?
« How can we optimize the features? - filtering, reproducibility
+ What about multimodality approaches? CT/PET/MRI
We can expect results to improve as we improve our control of the
various noise sources
Also, new modeling/image handling techniques will improve models
(especially deep learning)

Research group and collaborators

Our group (past and present Radiation Oncology and Radioloy
* JoyZhang *  Zhongxing Liao

Jinzhong Yang
* Dennis Mackin

Steven Lin

Daniel Gomez

+ Rachel Ger
+ Luke Hunter * ChaanNg
* David Fried * Joe Chang
* Xenia Fave * Dave Fuller
+ Joonsang Lee « Heshan Elhawani
+ Constance Owens
+ CalliNguyen Statistics

+ Shouhao Zhou
Physics

Susan Tucker
+ Osama Mawlawi

* Peter Balter

Francesco Stingo

Arvind Rao

Center for Radiation Oncology Research




