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What is Machine Learning

* “Machine learning is a field of study

that gives computers the ability to Aglglﬂﬂﬂaltlcf!“illsgﬂjg
learn without being explicitly actandadapt

programmed”
e Arthur Lee Samuel— 1959

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data
Source:

Cousins of Al
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https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55

Why Machine Learning?

* Develop systems that can automatically adapt and customize
themselves to individual users

e Discover new knowledge from large databases (data mining)
e Automate monotonous tasks (which may require some intelligence)

e Develop systems that are too difficult to hard-code because they
require specific detailed skills or knowledge relevant to a specific task

* Knowledge engineering bottleneck

THE UNIVERSITY OF TEXAS

Radiomics Certificate Course —2018 AAPM Annual Meeting MD AndersonGaneer Center:



Why how?

* Large amounts of clinical data

*|ncreasing computation power

e Growing progress in available algorithms and
theory developed y researchers

*|ncreasing support from industries and funding
agencies
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Supervised vs Unsupervised Learning

Source: Proofreader’s Whimsy
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http://prooffreaderswhimsy.blogspot.com/2014/11/machine-learning.html

Supervised vs Unsupervised Learning

[MACHINE LEARNING

UNSUPERVISED

LEARNING
Group and interpret ﬁ{ CLUSTERING ]

data based only

on input data
\ /

) . CLASSIFICATION
SUPERVISED
LEARNING

Develop predictive
model based on both
input and output data
N J [ REGRESSION ]

Source: https://www.mathworks.com/discovery/machine-learning.html
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Supervised Learning

Classification Regression

Source: KDnuggets

Goal: to find specific relationships or structure in the input data that allow
us to effectively produce correct output data
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https://www.kdnuggets.com/2018/04/supervised-vs-unsupervised-learning.html

Unsupervised Learning

Clustering
Patterns in
the Data

Goal: to learn the inherent structure of our data without using explicitly-
provided labels
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Supervised vs Unsupervised Learning

* Which one should | use?

* Supervised Learning

* if you need to train a model to make a prediction--for example,
the future value of a continuous variable, such as temperature
or a stock price, or a classification—for example, identify makes
of cars from webcam video footage.

* Unsupervised learning

* if you need to explore your data and want to train a model to
find a good internal representation, such as splitting data up
into clusters.
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The two “Trade-offs”

1. Prediction Accuracy vs

Model Interpretability
 Global Interpretability 1 @ Linear Regression
 Local Interpretability @ Decision Tree
 Feature Selection |
Interpretability @ K-Nearest Neighbors

@ Random Forest

@ Support Vector Machines

@ Neural Nets

a
L

Accuracy
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https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9

The two “Trade-offs”

2. Biasvs Variance

e Bias: error from erroneous
assumptions in the learning
algorithm

* Variance: error from
sensitivity to small
fluctuations in the training set

Expected )
Error B [(y N f(‘”))z]
where

Bias [f ()] =E
and

Var [£ (@)] = BIf (2)?] - (BIf (=)))

Error

2

= (Bias [f(m)]) + Var [f ()] +

[f (=) - f(=)]

0’2

Irreducible
Error

Underfitting Overfitting

High Bias High Variance
.

Validation Error

Training Error

_____________________

2
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Model Complexity

Source: Bias-Variance Tradeoffin Machine Learning
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No Free Lunch in Machine Learning
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Data Curation

Medical data mining

Linking diseases, drugs, and adverse
reactions

Pharmacy | »
Q) | Revorm

1
‘ | LOINC
J

‘ SNOMED CT

Lars Juhl Jensen <

The Nove Moo Fausndation
Center for Protein Research

Source: Lars JuhlJensen
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https://www.slideshare.net/larsjuhljensen/medical-data-mining-33324649

Data Curation

Medical data mining

Linking diseases, drugs, and adverse
reactions

.

Reality
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Data Curation

2012 Y |
Harvard Business Review

B;ta Scientist: The Sexiest Job of
the 21st Century

What data scientists spend the most time doing

® Building training sets: 3%

® (Cleaning and organizing data: 60%

Cleaning Big Data: Most Time-

Consuming, Least Enjoyable Data Science
Task, Survey Says

Gil Press Contributor @
Mar 23, 2016, 09:33am =+ 38,974 views » #BigData

® (Collecting data sets; 19%

Mining data for patterns: 9%
® Refining algorithms: 4%

® Other:5%

80% time is data collection/curation
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Data Curation

|

T THWGHT [ HAD THE
SEXIEST 0B OF THE

Source: KDnuggets
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Data Curation

D) NLM > NNLM

Mational Network of Libraries of Medicine

https://nnlm.gov/data/data-curation

Data Curation Tools

(see Data Tools for a more general list of useful tools)

Open Data Tools: Turning Data into ‘Actionable Intelligence’# (2013) — A comprehensive list of “More than
349 Subject Specific Open Data Tools.”

Information Space: 86 Helpful Tools for the Data Professional PLUS 45 Bonus Tools# — Very useful

anthology of tools and resources for data professionals, data dabblers, or data scientists from the iSchool at
Syracuse.

Digital Curation Resources outside the DCC# — Catalog of tools for data creators and digital curators.

DCC (Digital Curation Centre) Tools# — A suite of data management and curation tools created by the UK's

Digital Curation Centre.

Digital Curation Glossary® — Glossary of data curation and data preservation terminology from the Digital
Curation Centre (UK).

OpenRefine# — OpenRefine (ex-Google Refine) is a powerful tool for working with messy data, cleaning it,
transforming it from one format into another, extending it with web services, and linking it to databases
like Freebase.

ORCID# — An open community-based effort to create and maintain a registry of unique researcher
identifiers and a transparent method of linking research activities and outputs to these identifiers.
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Training, Validation, and Test Sets

e Sampling Techniques
* Simple Random Sampling (SRS) - Most commonly used
* Trial-and-error Methods
e SystematicSampling
* Convenience Sampling
CADEX, DUPLEX
 Stratified Sampling

* Typically in ML/DL we split our data set (of size n) into three subsets:
* Training
* Validation
* Test
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Cross-validation Techniques

* Hold-out cross-validation
* Training, Validation, and Test mutually disjointed datasets
* Advantage: proportion of subsets are not strictly restricted
* Train models: Training Set
* Fine-tune models: Validation Set

Algorithm 1 Hold-out cross-validation

1. Input: dataset T', performance function error, computational models Ly, ---,L,,,m > 1
2. Divide T into three disjoint subsets T}, (training), 7, (validation), and T; (testing).
3. For j=1,---,m:
3.1. Train model L; on T}, and periodically use 7’ to asses the model performance:
EJ = error(L;(Ty,)).
3.2. Stop training, when a stop-criterion based on FEY/ is satisfied.
4. For j =1,---,m, evaluate the performance of the final models on T;: E} = error(L;(T})).

Resource: Data Splitting by Z. Reitermanova
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https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf

Cross-validation Techniques

e k-fold cross-validation
* More test =2 stable estimate of the model error
e Useful when not enough datais available

Algorithm 2 K-fold cross-validation

1. Input: dataset T', number of folds k, performance function error, computational models
Lla”':LmaTn 2 1
2. Divide 1" into k disjoint subsets 17, ---, T} of the same size.
3. Fori=1,---,k:
T, — T, Ty — {T\ Ti}.
3.1. For j =1,---,m:
Train model L; on T3, and periodically use 7), to asses the model performance:
El(i) = error(L;(Ty)).
Stop training, when a stop-criterion based on EJ(i) is satisfied.

. ; k S
4. For j =1,---,m, evaluate the performance of the models by: EJ = % > El(7).

Resource: Data Splitting by Z. Reitermanova
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https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf

Cross-validation Techniques

* Combining hold-out and k-fold CV

Data (n =1000)

Train (n = 800)

: K-fold CV — parameter selection
: Train Validate

1 (n=200)

2 (n=200)

3 (n=200)

4 (n=200)
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Cross-validation Techniques

* Combining hold-out and k-fold CV

Data (n =1000)

Train (n = 800)

K-fold CV use for parameter selection
: Train Validate

2 (n=200)

3 (n=200)

4 (n=200)
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Cross-validation Techniques

* Combining hold-out and k-fold CV

Data (n =1000)

Train (n = 800)

K-fold CV use for parameter selection
: Train Validate

1 (n=200)

2 (n=200)

3 (n=200)

4 (n=200)
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Machine Learning Models
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“Some food for thought”

* George Box (1919 — 2013)

“Essentially, all models are
wrong, but some are useful”
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Linear Regression

15F

Y ~ + 51X
~ [o + [ |
/ \ 101 .

Coefficients:  intercept slope / . :
Estimation of Parameters: | N o
Residuals: e;=y; — 5}1’ 28 10 | 10 20 30 40 50 60

Residual Sum of Squares: RSS = 612 + 672 + -+ e,%
A A 2 A A 2 A A 2 Minimize
or |RSS = (yi — Bo—Brx1) + (yi = Bo = Prx1) + -+ (yi = Bo = B1x1)" | rss

B, = i—1 (i =0 (y; — ¥)
| =

ST (x; — 7)? Bo=9— b %
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Linear Regression

* Assessingthe accuracy of the model
e R-squared or fraction of variance explained

_TSS—RSS_l_R_SS
- TSS - TSS

TSS =3 (yi —¥)°

e Residual Sum of Squares

RQ
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Linear Regression

* Assumptions
* Linear relationship
* Residual plots
Multivariate normality (predictors are normally distributed)
e Goodness of fit test (Kolmogorov-Smirnov test)

No or little multicollinearity
» Correlation matrix (Pearson’s), Tolerance, and variance inflation factor (VIF)

e No auto-correlation
e Time-series data

 Homoscedasticity (residuals are equal across the regression line)
* Scatter plots
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Logistic Regression

* Lessassumptionsthanlinearregression

e Some still apply
» Observationsto be independent of each other
e Littleor no multicollinearity
* Linearity of independentvariables and log odds
e Larger sample size is useful

* The only “real” limitation on logistic regression is that the outcome
must be discrete
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Logistic Regression

e Discrete Outcomes (Classification Problem)

e .-BD —|— 31 X

p(X) = 1 ot B1X Logistic Function

Estimation of Parameters:

Maximum likelihood:

((Bo, B1) = H p(z;) H (1 —p(zi)) Likelihood Function

1y, =1 vy, =0

THE UNIVERSITY OF TEXAS

Radiomics Certificate Course —2018 AAPM Annual Meeting MD Anderson-Gasneer Center:




Logistic Regression

e Discrete Outcomes (Classification Problem)

e .-BD —|— 31 X

p(X) = 1 ot B1X Logistic Function

Yes 1o0- - f——.—-
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i

-2 0 2 4 6 8 10
predictor variable

NO oo-
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Logistic Regression

*Limitations
e Unstable with well separated classes
e Unstable with few examples
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Discriminant Analysis

e Classification algorithm that estimates Bayesian classification

Sample average Sample variance Prior probabilities
fy = — L _ T = ng/n
— g:i 1 k k

Discriminant
function

LDA: Sk(w):x:-'f'—z—f! + log (k)
o 262

. 1
Ok () = ;L'Tz_ly.k — 5;1.52_1;1.33 + log 7

Multi-variable solution

. 1 ) A
2k 1=ﬁ—k Z (@; — fu) (i — )"
' i:yi=k
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Discriminant Analysis

* Discriminant analysis predicts as follows:
Y| X =z := argmax, m;pi(x) = argmax,. ox(z)

4.0

3.5

Sepal. Width

3.0
|

25

2.0

Sepal.Length
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Discriminant Analysis

* Key Assumptions
e Each class density is multivariate Gaussian

X|Y; ~ N(pj, %), j=0,1

* Equal covariance

Yi=%, j=0,1

 No outliers
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Ridge Regression

 Like least squares linear regression but shrinks the estimated coefficients
towards zero

* Very useful when multicollinearity (near-linear relationshipsamong the
independent variables) occurs

* Given a response vectory € R™ and a predictor matrix X € R™ P, the ridge
regression coefficients are defined as

n p
FU9E = argmin > (y;i —x; B)*+ A B

PERP i1 j=1

= argmin ||y — X,BH% + A ||/8||%

BERP ~ ' \/-/ —
Loss Penalty Lz norm

 Where A >0 is a tuning parameter that controls the strength of the penalty
term
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Ridge Regression

e Cannot perform variable

. Icavol
selection o _
e Coefficients are reduced close to
zero, but not zero (unless A = oo, .
where all coefficients are zero) T
- Low interpretability g fewn
§ 8-
iy
5 J"i’?‘f‘?_lﬁ___;,f._._ —————
|||.f
i/
e 4
I | | | | |
0 200 400 600 800 1000
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Ridge Regression

*\/ariable standardization is the first step
when using ridge regression!

* Assumptions
*inearity
* Constant variance (no outliers)
*Independence
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LassO

* The Lasso combines some of the shrinking advantages of ridge
regression with variable selection

* |tis very competitive with the ridge regression in regards to prediction
error

* The only difference between the two is that ridge regression uses £,
norm penalty where the lasso uses the £1 norm penalty

* While the £1 and £, norm look very similar, the ridge and lasso
solutions behave very differently
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ENYe

* The Lasso (Least Absolute Selection and Shrinkage Operator) is defined

p
613580 = argmin Hy — Xﬁ“% —+ )\Z |/8]|
BERP j=1
= argmin ||y — X5|% + A 8]l
BERP S——~— —~
Loss Penalty = Ll Nnorm

e Again, we have a tuning parameter A that controls the amount of
regularization

 As usual, assume X"*P is standardize and y is centered
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ENYe

e Often, we believe that many of
the B, 's should be O

Icavol

0.6

* Therefore, we would like to have <
a set of sparse solutions

svi

Iweigh

Coefficients

0.2

e Large enough A will set some o
coefficients exactly equal to O! . __?'_E_affff_'_\\\
* So the LASSO will perform variable ) j
selection for us! .y
[I) 2I0 4I0 GIO Bl(]

A
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Ridge Lasso

lcavol Icavol
@ © ]
(=] (=]
3 <
(=] (=]
72} ) 0 .
b= svi b= svi
@ @« :
S ‘G Iweigh
= =
o™
(=]
8 § S
pd8hs
- gleasorn\
S -
R
| I | | I | | | | | |
0 200 400 600 800 1000 0 20 40 60 80
A A

Source: R prostate dataset
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LassO

* Limitation
e Cases where p >> n the lasso selects at most n variables before it
saturates

e Convex optimization problem
e Curse of dimensionality
e Solution

* Elastic Nets (Ridge + Lasso)

e Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable
Selection via the Elastic Net". Journal of the Royal Statistical
Society. Series B. Wiley. 67(2): 301-20. JSTOR 3647580
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Classification w/ Ridge and Lasso

* Add a penalty to the logistic function

lp(Bo; B; A) = —1(Bo; B) + AJ(B)

* Where
* [(Bo; B) denotes the unrestricted log-likelihood function
e Nisthe regularization parameter controllingthe amount of shrinkage

. J(B) is a penalty function on the coefficient parameter (3
* Either the lasso or ridge penalty functions
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Support Vector Machines

* Goal: find an optimal hyperplane

* Support Vectors
e Data points thatlie closestto the decision surface (or hyperplane)
* Most difficult data points to classify
* They have a direct relationship on the optimal location of the hyperplane

e * In general, there are lots of possible
* " solutions
* %X * . . .
" Support Vector Machine (SVM) finds

y +* ** an optimal solution
*
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Support Vector Machines

* SVMs maximize the margin around Support Vectors

the separating hyperplane
// hyperplane

* The decision function is fully

specified by a subset of training * *
samples % |
*

* Support Vectors

* Real-world data (non-separable)

e Soft margin classifier

* OK to misclassify a few training
observationsin orderto do a betterjob
in classifying the remaining
observations

Maximize margin

THE UNIVERSITY OF TEXAS

Radiomics Certificate Course —2018 AAPM Annual Meeting MD AndersonGaneer Center:




Support Vector Machines

o T 1 ) i ~ .
maximize f(ci...c,) = ;Ci D) ; 2 vici(¢(Z:) - o(T5))yjc
T 1 T T ~ ~
— Zl:ci — E ;Zyicik(miﬁmj)yjcj
1= i=1 j=1
n ) Kernel
subject to Zciyi =0,and 0 <¢; < —— forall ¢
— 2n
* The Kernel Trick
* Linear: k(xl-,xj) = (xl- * X
e Polynomial: k(xi,xj) = (xl- * X
s 2
» Gaussian radial basis function: k(x;,x;) = e x5 or y > 0

» Hyperbolictangent: k(x;,x;) = tanh(xX; - X; + c) for somek >0 and c <0
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Support Vector Machines

e Kernel Trick
e Useful when the decisionfunctionis not linear

Radial transformation
maps dataintoa
linearly separable space

Radiomics Certificate Course —2018 AAPM Annual Meeting
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Support Vector Machines

What to do when your SVM is overfitting?

* Decrease the cost constraint (C) of the regularization
term in the Lagrange formulation

* Use less expressive kernel (maybe a smaller degree
polynomial)

* As with any learner, collecting more training data
usually provides an improvement in accuracy
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Decision Trees

* CART (Classification and Regression Trees, Breiman et al 1984)

e A decision tree is drawn upside ves| in Radiomics Course? | No

down with its root at the top
* Node / \

e Branches Yes | coffee<2 | No [ awake ]
e Leaf (decisions) / \
paying
asleep attention? No
awake asleep
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Decision Trees

How does the algorithm decide which features are moreimportant (top
of thetree)and wheretocreate a split?

e Recursive binary splitting

* All the features are considered and different split points are tried and tested
using a cost function

* The split with the lowest costis selected
e “Greedy algorithm”

e Cost functions
* Regression: Mean Square Error
* Classification: Gini, Entropy, etc.
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Decision Trees

Improving prediction accuracy
e Assigning a maximum depth
* Length of the longest path from the root to leaf

e Leaf size
e Seta minimum number of training inputs to use on each leaf

* Pruning
 Removal of branches that make use of features having low importance

Reduces complexity of the tree = increased predictive power by
reducing overfitting

* In theory, the depth of the tree is limited by the number of training
examples and extremely deep
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Decision Trees

e Advantages
e Simple to understand, interpret, visualize
* Handles both numerical and categorical data
* Nonlinearrelationships between parameters do not affect tree performance

e Disadvantages
* Decision tree learners can create over-complex trees =2 overfitting
e Decision tree learners create biased trees if some classes dominate

* Balancethe dataset prior to training
* Greedy algorithms cannot guarantee to return the globally optimal decision

tree 2 mitigated by ensemble learning (multiple trees)
* Adaboost, Bagging, Random Forest, etc.
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Random Forest

https://www.eustafor.eu
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https://www.eustafor.eu/

Random Forest

* Addsadditional randomnessto the model

v v

1. For each tree: randomly selects a subset of training data (~66%)
2. At each node: randomly selects a subset of predictor variables (~+/p)
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Random Forest

* Qut-of-Bag (OOB) Error

e Estimates the prediction error of random forests
(and other ensemble learners) by using only the
trees that did not have a training sample x; in their
bootstrap sample

* Feature importance
*Very easy to calculate
* Can be used to remove low importance features
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Random Forest

* Advantages
* Both regression and classification
* Fasy to use

* Number of hyperparameters is not too high and they are easy to
understand

* More trees =2 better predictions (until you reach a plateau)

* Disadvantages
* A lot of trees =2 slow and ineffective for real-time predictions
* Loss of interpretability
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Clustering Methods

* Unsupervised learning technique

* Helps identify homogenous subgroups or clusters in a
data set

Two clustering approaches:
* K-Means Clustering

* Hierarchical Clustering
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Iteration 1, Step 2a

K-Means Clustering

e How it works

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

Data Step 1
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(a) For each of the K clusters, compute the cluster centroid. The

Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results

kth cluster centroid is the vector of the p feature means for the
observations in the Ath cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Source: An Introduction to Statistical Learning, Wittenetal, 2013

Objective Function
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Source: An Introduction to Statistical Learning, Witten etal, 2013
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K-Means Clustering

* Limitations

* Random initialization & local optima. R Objective Values
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Source: An Introduction to Statistical Learning, Wittenetal, 2013
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Hierarchical Clustering

* Creates a dendrogram

Algorithm 10.2 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis- most

tance) of all the (1) = n(n—1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. Fori=n,n—1,...,2:

7

(a) Examine all pairwise inter-cluster dissimilarities among the ¢ dissimilarity
clusters and identify the pair of clusters that are least dissimilar | ====—eeeeeeeeeepre—————- -
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among

the i — 1 remaining clusters. least r_l

Source: An Introduction to Statistical Learning, Witten etal, 2013
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Clustering Methods

oT
d

nings to remember when using clustering

gorithm:

e Standardizing variables so that all are on the

same scale. It is important when calculating
distances

* Treat data for outliers before forming clusters
as it can influence the distance between the
data points.
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Honorable Mention List

*Elastic Nets
*Principal Component Analysis

Other Ensemble Methods
*Bagging and Boosting

*Nearest Neighbor
*Bayesian Networks
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Final Remarks

* Proper splitting of datasets leads to better generalization
* No peaking at the test set!

* No one algorithm works best for every problem
* “No free lunch in Machine Learning”

* Think about the inputs in your model
* Intuition and knowledge about the data can prevent head-aches

* Develop a good understanding about mathematical principals
behind your algorithm of choice!
* |[dentify the strengths and weaknesses
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Thank you!

Carlos E. Cardenas, PhD
cecardenas@mdanderson.org
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