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What is Machine Learning

* “Machine learning is a field of study
that gives computers the ability to : ARTlf[B!@l INTELLIGENCE
learn without being explicitly P e
programmed”

* Arthur Lee Samuel — 1959
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https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55
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Why Machine Learning?

 Develop systems that can automatically adapt and customize
themselves to individual users

« Discover new knowledge from large databases (data mining)
« Automate monotonous tasks (which may require some intelligence)

* Develop systems that are too difficult to hard-code because they
require specific detailed skills or knowledge relevant to a specific task
* Knowledge engineering bottleneck

N Tin o caeer Genter

Why now?

*Large amounts of clinical data

*Increasing computation power

*Growing progress in available algorithms and
theory developed by researchers

*Increasing support from industries and funding
agencies

Radiomics Certificate Course — 2018 AAPM Annual Meeting MD Anderson GascerCenter

Supervised vs Unsupervised Learning
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https://www.mathworks.com/discovery/machine-learning.html

Supervised Learning
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Classification Regression
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Goal: to find specific relationships or structure in the input data that allow
us to effectively produce correct output data

.

Source: KDnuggets
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Unsupervised Learning

Clustering
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Goal: to learn the inherent structure of our data without using explicitly-
provided labels
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Supervised vs Unsupervised Learning

* Which one should | use??
* Supervised Learning

« if you need to train a model to make a prediction--for example,
the future value of a continuous variable, such as patient weight
or tumor size, or a classification—for example, a segmentation
task or HPV status.

* Unsupervised learning

« if you need to explore your data and want to train a model to
find a good internal representation, such as splitting data up
into clusters.
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https://www.kdnuggets.com/2018/04/supervised-vs-unsupervised-learning.html

The two “Trade-offs”
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1. Prediction Accuracy vs
Model Interpretability
¢ Global Interpretability
¢ Local Interpretability
* Feature Selection

Source: Interpreting Machine Learning Models

@ Unear Regression
@Decision Tree

@ Random Forest
@ Support Vector Machines

@ Neural Nets

Aceuracy
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The two “Trade-offs”

. . Underfitting Overfitting
2. Biasvs Variance High Bias High Variance
* Bias: error from erroneous
assumptions in the learning |
algorithm
* Variance: error from \
sensitivity to small E \
fluctuations in the training set Validation Eror
E ted
i | e e
Irreducible r
B [f(2)] = B [z} — fta] Error
= Model Complexity

Var (2] = Bl (=] - [EL))

Source: Bias-Variance Tradzoffin Machine Learning
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No Free Lunch in ML
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https://medium.com/ansaro-blog/interpreting-machine-learning-models-1234d735d6c9
https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/

Data Curation
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Medical data mining
Linking diseases, drugs, and adverse
reactions

4 :‘jt_‘

Our reality

e Gances Center

Data Curation

2012 w
Harvard Business Review

Data Scientist: The Sexiest Job of
the 21st Century

Wt data scentits spend

o=l

Cleaning Big Data: Most Time-
Consuming, Least Enjoyable Data Science
Task, Survey Says

®

80% time is data collection/curation
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Data Curation

Data Curation Tools

(s0 Data Tools for a more o

« OpenDitaT

) D

https://nnlm.gov/data/data-curation
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Splitting Datasets

* Sampling Techniques
* Simple Random Sampling (SRS) - Most commonly used
* Trial-and-error Methods
* Systematic Sampling
« Convenience Sampling
* CADEX, DUPLEX
« Stratified Sampling

« Typically in ML/DL we split our data set (of size n) into three subsets:
* Training (train model)
* Validation (evaluate model during hyper-parameter selection)
* Test

105 1 Re ova.pdf
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Cross-validation Techniques

* Hold-out cross-validation
« Training, Validation, and Test mutually disjointed datasets
* Advantage: proportion of subsets are not strictly restricted
* Train models: Training Set
* Fine-tune models: Validation Set

Algorithm 1 Hold-out cross-validation

1. Tnput: ds srmance function error, computational models Ly, -+, Ly, m > 1

aset T, po

2. Divide T into three disjoint subsets Ty, (training), 7, (validation), and T; (testing)
3.
\ Ty, and periodically nse T, to asses the model performance:
).
when a stop-criterion based on £} is satisfied
4. For j = 1,---,m, evaluate the performance of the final models on Ty: E} = error(L,(T}))

105 11
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Cross-validation Techniques

* k-fold cross-validation
* More test - stable estimate of the model error
« Useful when not enough data is available
Algorithm 2 K-fold cross-validation

1. Input: dataset T, number of folds k, performance function error, computational models
Ly Lym = 1

2. Divide 7 into k disjaint subsets Ty, -+, Ty of the same size

3. Fori=1 .

1 Lj on Ty and periodically use T, to asses the model performan
rror(L;(1,)).
ning, when a stop-criterion based on EJ({) is s

4. For j=1,---,m, evaluate the performance of the models by: Ej = £ 5% Fi(i)

atisfied,

D510 105 11

THE UNIVERSITY OF TEXAS
Radiomics Certificate Course — 2018 AAPM Annual Meeting MD Anderson CasecerCenter



https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf
https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf
https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf
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Cross-validation Techniques

* Combining hold-out and k-fold CV

Data (n = 1000)

Train (n = 800) Test (n = 200)

K-fold CV — parameter selection

Train Validate

1(n=200)
3(n=200)

[ —p—
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Cross-validation Techniques

* Combining hold-out and k-fold CV

Data (n = 1000)

Train (n = 800) Test (n = 200)

K-fold CV — parameter selection
Train Validate
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Cross-validation Techniques

« Combining hold-out and k-fold CV

Data (n = 1000)

Train (n = 800) Test (n = 200)

K-fold CV — parameter selection
Train Validate
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Machine Learning Models

N Tin o caeer Genter

Linear Regression

Y~ f+5X
/ AN

Coefficients:  intercept slope

Estimation of Parameters:

Residuals: €= Y; — J;
Residual Sum of Squares: RSS = e? + e2 + -+ e2

o [RSS = (= Bo— Buxa)” + (= Bo— Buxa)” + 4 (i — o — Bua)” |

5 _ Limi— DG —3)

B = = Bo =9 — p1%
Sy G = 22 fo=7=h
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Linear Regression

« Assessing the accuracy of the model
* R-squared or fraction of variance explained

pr_ TSS—RSS _  RSS
o TSS - TSS
TSS = 30 (yi — w)? RSS =30 (i —i)*

* Residual Sum of Squares

L pac
RSE = /- —RSS
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Linear Regression

* Assumptions
* Linear relationship
* Residual plots
* Multivariate normality (predictors are normally distributed)
* Goodness of fit test (Kolmogorov-Smirnov test)
* No or little multicollinearity
« Correlation matrix (Pearson’s), Tolerance, and variance inflation factor (VIF)
* No auto-correlation
* Time-series data
* Homoscedasticity (residuals are equal across the regression line)
* Scatter plots

N Tin o caeer Genter

Logistic Regression

* Less assumptions than linear regression

« Some still apply
* Observations to be independent of each other
« Little or no multicollinearity
« Linearity of independent variables and log odds
* Larger sample size is useful

* The only “real” limitation on logistic regression is that the outcome
must be discrete

Radiomics Certificate Course — 2018 AAPM Annual Meeting MDAndersonGaseer Center

Logistic Regression

« Discrete Outcomes (Classification Problem)

et ELX

p(X)

Logistic Function

= 1+ ol mx

of Parameters:
Maximum likelihood:

60,800 = T ptei) TT (0= pli))]| wkelinood Function

iy =1 ity =00
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Logistic Regression
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« Discrete Outcomes (Classification Problem)

et ELX

p(X)

Logistic Function

= 1+ ol mx

Has Cancer

No Cancer

No

it iy o Teuss
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Logistic Regression

*Limitations
*Unstable with well separated classes
*Unstable with few examples
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Discriminant Analysis

« Classification algorithm that estimates Bayesian classification

Sample average Sample variance Prior probabilities
s R T fo o mun
=it
» Je i Discriminant
s b)) = a5~ TR og(ay) i
WA dilo) = - Bh S o) e

- 1
Sile) = TS Mg — Spf B g+ |

Multi-variable solution
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Discriminant Analysis

« Discriminant analysis predicts as follows:
Y|X = x = argmax, mp,(x) = argmax, d,(z)
: s

Sepaiwian
30

SepiLengh
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Discriminant Analysis

* Key Assumptions
* Each class density is multivariate Gaussian

X|Y; ~ N(uz, 55). j=0,1

* Equal covariance

5=% j=0.1

* No outliers
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Ridge Regression

« Like least squares linear regression but shrinks the estimated coefficients
towards zero

« Very useful when multicollinearity (near-linear relationships among the
independent variables) occurs
* Given a response vector y € R™ and a predictor matrix X € R™*?, the ridge

regression coefficients are defined as
it P

:‘}”'*'""ze\r:nuill w—x) B)% + A g2
rmi Swm—al8?+2Y 8

i=1 =

= argmin |ly — X413 + 2 )|813
FERn

Loss Penalty L norm

* Where A 2 0 is a tuning parameter that controls the strength of the penalty
term

T8 uNvERSITY OF TEXAS
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Ridge Regression
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 Cannot perform variable

selection =1 |

* Coefficients are reduced close to |

zero, but not zero (unless A = oo,
where all coefficients are zero)

-> Low interpretability

Conticents
0z
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Ridge Regression

*Variable standardization is the first step when
using ridge regression!

*Assumptions
e Linearity

*Constant variance (no outliers)
*Independence

Radiomics Certificate Course - 2018 AAPM Annual Meeting MD Anderson Casear Center

Lasso

* The Lasso combines some of the shrinking advantages of ridge
regression with variable selection

* It is very competitive with the ridge regression in regards to prediction
error

« The only difference between the two is that ridge regression uses €,
norm penalty where the lasso uses the 1 norm penalty

* While the £, and £, norm look very similar, the ridge and lasso
solutions behave very differently

e unvERsT oF TEXAS
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Lasso
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* The Lasso (Least Absolute Selection and Shrinkage Operator) is defined
»
A0 — aremin ||ly — X3)3 + A 3
J vgmin ||y — X 51} ;} J
= argmin |ly — X85 + A 18
AERP S———— S——
Loss Penalty — L, norm
« Again, we have a tuning parameter A that controls the amount of
regularization
* As usual, assume X™*P is standardize and y is centered

N Tin o caeer Genter

Lasso

« Often, we believe that many of
the B;’s should be 0 a

* Therefore, we would like to have «
a set of sparse solutions

Conticionts
0z

« Large enough A will set some
coefficients exactly equal to 0!
* So the LASSO will perform variable
selection for us!
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Ridge Lasso

Coethsents
Coeients

o 20 a &0 80

Source: R prostate dataset
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Lasso
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¢ Limitation
 Cases where p >>n the lasso selects at most n variables before it
saturates
« Convex optimization problem
* Curse of dimensionality
« Solution
« Elastic Nets (Ridge + Lasso)

* Zou, Hui; Hastie, Trevor (2005). "Regularization and Variable
Selection via the Elastic Net". Journal of the Royal Statistical
Society. Series B. Wiley. 67(2): 301-20. JSTOR 3647580

N Tin o caeer Genter

Classification w/ Ridge and Lasso

* Add a penalty to the logistic function
1p(Bo: B A) = —1(Bo; B) + AJ ()

* Where
* 1{{3n: ) denotes the unrestricted log-likelihood function
* \is the regularization parameter controlling the amount of shrinkage
« J ({3} is a penalty function on the coefficient parameter B
« Either the lasso or ridge penalty functions

Radiomics Certificate Course — 2018 AAPM Annual Meeting MDAndersonGaseer Center

Support Vector Machines

« Goal: find an optimal hyperplane

* Support Vectors
« Data points that lie closest to the decision surface (or hyperplane)
* Mostdifficult data points to classify
* They have a direct relationship on the optimal location of the hyperplane

* / * In general, there are lots of possible
*

* * solutions
* K *S Vi Machine (SVM) find
* * upport ?ctc?r achine ( ) finds
* an optimal solution
*
*
Radiomics Certificate Course — 2018 AAPM Annual Meeting MDAndersonCancer Center
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Support Vector Machines

* SVMs maximize the margin around Support Vectors
the separating hyperplane

P . . hyperplane
* The decision function is fully

specified by a subset of training
samples
* Support Vectors

 Real-world data (non-separable)
« Soft margin classifier

* OK to misclassify a few training
observations in order to do a better job
in classifying the remaining
observations

N Tin o caeer Genter

Maximize margin

Support Vector Machines

maximize fe...co) = S e — %ZEML‘- lo(Z:) - 0lZ;)ye;
= S

for all 4.

subject to gr:‘y, =0and0<e € o

* The Kernel Trick
* Linear: k(f{,z) = (Y{Z)

+ Polynomial: k(x;, %) = (%7 - %} P

2
« Gaussian radial basis function: k(f{,ﬁ) = evIFi-%jll fory>0
« Hyperbolic tangent: k(?i, f]') = tanh(k5x; - X+ c) forsome k>0 and c <0

[ 44 ) Radiomics centificate Course — 2018 AAPM Annual Meeting MD Anderson GascerCenter

Support Vector Machines

* Kernel Trick
* Useful when the decision function is not linear

*
* 4 K|
- X k| &
e by X
** * *
""" Radial transformation * % *
maps data into a * *
* linearly separable space
Radiomics Certificate Course — 2018 AAPM Annual Meeting MDAndersonCancer Center
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Decision Trees

* CART (Classification and Regression Trees, Breiman et al 1984)

* A decision tree is drawn upside
down with its root at the top
* Node

* Branches coffee <2 awake

« Leaf (decisions) /

atontins (]

/N

Covaie )
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Ves | in Radiomics Course?

Decision Trees

How does the algorithm decide which features are more important (top
of the tree) and where to create a split?
* Recursive binary splitting
« All the features are considered and different split points are tried and tested
using a cost function
* The split with the lowest cost is selected
* “Greedy algorithm”

* Cost functions
* Regression: Mean Square Error
« Classification: Gini, Entropy, etc.

Radiomics Certificate Course — 2018 AAPM Annual Meeting MDAndersonGaseer Center

Decision Trees

Improving prediction accuracy

* Assigning a maximum depth
« Length of the longest path from the root to leaf

* Leaf size
* Set a minimum number of training inputs to use on each leaf

* Pruning
* Removal of branches that make use of features having low importance
Reduces complexity of the tree = increased predictive power by
reducing overfitting
* In theory, the depth of the tree is limited by the number of training
examples and can be extremely deep

e unvERsT oF TEXAS
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Decision Trees
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* Advantages
« Simple to understand, interpret, visualize
* Handles both numerical and categorical data
* Nonlinear relationships between parameters do not affect tree performance

« Disadvantages
« Decision tree learners can create over-complex trees = overfitting
* Decision tree learners create biased trees if some classes dominate
+ Balance the data set prior to training
* Greedy algorithms cannot guarantee to return the globally optimal decision
tree = mitigated by ensemble learning (multiple trees)
+ Adaboost, Bagging, Random Forest, etc.

e ances Center

Random Forest

Just imagine...
a lot of decision trees

hitos:/fwwweustaforey
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Random Forest

 Adds additional randomness to the model

)

{ ] 7

1. For each tree: randomly selects a subset of training data (~66%)
2. At each node: randomly selects a subset of predictor variables (~+/p)

THE UNIERSITY OF TEXAS
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Random Forest

*Qut-of-Bag (OOB) Error
« Estimates the prediction error of random forests
(and other ensemble learners) by using only the
trees that did not have a training sample x; in their
bootstrap sample
*Feature importance
«Very easy to calculate
« Can be used to remove low importance features

N Tin o caeer Genter

Random Forest

* Advantages
* Both regression and classification
* Easy to use

* Number of hyperparameters is not too high and they are easy to
understand

* More trees = better predictions (until you reach a plateau)

« Disadvantages
* Alot of trees = slow and ineffective for real-time predictions
* Loss of interpretability

Radiomics Certificate Course - 2018 AAPM Annual Meeting MD Anderson Casear Center

Clustering Methods

* Unsupervised learning technique

* Helps identify homogenous subgroups or clusters in a
data set

Two clustering approaches:
* K-Means Clustering
* Hierarchical Clustering

e unvERsT oF TEXAS
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oain

Final Fosuts

A
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K-Means Clustering

* How it works

Ngorithm 101 K

e usERSTY OF TEAS
MDAndersoncaseerCenter

Objective Function
x ,
e { 3L ) —rag)
=
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Obijective Values

K-Means Clustering

* Limitations

* Random initialization & local optima. R

MDAnderson Ganeer Center

RATA
Hierarchical Clustering
 Creates a dendrogram
| most
dissimilarity

least

1200
e usERSTY OF TEAS
MDAndersoncaseerCenter

? ol pai o
el dentify the ¥
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Clustering Methods
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*Things to remember when using clustering
algorithm:

Standardizing variables so that all are on the
same scale. It is important when calculating
distances

*Treat data for outliers before forming clusters
as it can influence the distance between the
data points.

e
Radiomics Certificate Course — 2018 AAPM Annual Meeting M

Honorable Mention List
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*Principal Component Analysis

*Other Ensemble Methods
*Bagging and Boosting

*Nearest Neighbor
*Naive-Bayes Classifier
*Bayesian Networks
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“Some food for thought”

* George Box (1919 — 2013)

“Essentially, all models are
wrong, but some are useful”

m Radiomics Certificate Course — 2018 AAPM Annual Meeting
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Final Remarks
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« Proper splitting of datasets leads to better generalization
* No peaking at the test set!

* No one algorithm works best for every problem
* “No free lunch in Machine Learning”

* Think about the inputs in your model
* Intuition and knowledge about the data can prevent head-aches

* Develop a good understanding about mathematical principals
behind your algorithm of choice!
* |dentify the strengths and weaknesses

N Tin o caeer Genter

Thank you!

Carlos E. Cardenas, PhD
cecardenas@mdanderson.org
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