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Outline 

Precision Radiation Therapy (PRT) 

Automation QA for PRT 

Artificial Intelligence (AI) 

AI applications in PRT QA 



2018/7/31 

2 

Stanford University 

Precision Radiation Therapy 

 Over decades of precision radiation therapy 

 

CRT -> IMRT -> IGRT -> IMPT ……. 

 

 Future direction for precision radiation therapy: 

 

More Imaging guidance modalities:  MR PET and etc. 

More adaptive radiation therapy via auto-replanning and 

checking. 

More genomic and other prognosis take into account. 

 

 

Stanford University 

Challenges and Solutions 

Challenges: 

 Modern treatment machine: more components to QA 

 Patient QA: treatment more complex & more adaptive plans 

 Increasing physics chart checking and weekly chart QA.  

 

Possible Solutions: 

 Hire more physicists 

 Automate the QA process 

 Smart  AI 

 

Stanford University 

TG-142: A comprehensive Linac QA Guideline 

 Dosimetry 

 Mechanical 

 Safety  

 MLC  

 Imaging: kV, MV, CBCT  

 Respiratory gating 

 Special procedures: IMRT/VMAT, SRS/SBRT, TBI,… 

 Mordern Linac: 6D Couch, FFF beams and etc 

 

Frequency:  

 Daily, Monthly, Annually  
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TG-218: IMRT Measurement-based Verification QA 

 

Recommendation updates on: 

Different delivery methods 

Data interpretation 

Dose normalization 

Choice of tolerance limits for  analysis  

Robustness analysis 

 

Stanford University 

QA Checks for Each Treatment 

 QA checks are time consuming and prone to human errors.  

 Some errors found after deliveries and may harm patients  

 

Ford et al, Red Journal, 2012 
Effectiveness: # of incidents that each QC check could detect/total # of incident reports. 

Stanford University 

Automated QA 

 

 QA for a modern Linac for precision radiation therapy has been extremely 

extended with new components/functions added  

 QA has become a complicated and very time consuming task 

 

 

 

 

 

Automated QA: more efficient, stable and accurate 

 

Palmer A et al, Br. J. Radiol. 2012(85) e1067–73 



2018/7/31 

4 

• One button QA 

• Self-calibration 

• Phantom pose invariant 

• Reduce/Remove operator dependence 

• Analyze results and generate QA report 

Automatic Delivery 

& Data Acquisition 

Automatic Data 

 Processing 

Automatic Analysis 

& Reporting 

Hardware Software + 

An Ideal Automatic QA Process for PRT 

Direct visualization of Radiation  

When radiation irradiates a radio-

luminescent sheet fabricated from a 

mixture of GOS:Tb and PDMS, the 

irradiated area become visible.   

Automatic QA at Stanford 

Is this possible to use this to 

improve our QA processes? 

Courtesy of Cesare H Jenkins 

Jenkins C H et al 2015 Med. Phys. 42 5–13 

Dr. Yang.     Dr Jenkins 

Automatic Mechanical QA 

• Light Field/Radiation field 

coincidence 

• Jaw position indicators 

• Cross-hair centering 

• Couch position indicators 

• Laser localization 
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Phantom 

• Structure fabricated on a MakerBot 

Z18 3D printer 

• 2.38 mm stainless steel balls 

• PDMS 

• Gd2O2S:Tb 

Optical 

tracking 

markers 

Radioluminesce

nt faces 
X-ray 

markers 

Phantom 

PDMS 
GOS 2.5 

mm 

Steel ball 

Jenkins C H et al Phys. Med. Biol. 61 (2016) L29 

Camera 

• Power over Ethernet (POE) machine 

vision camera 

• Single cable connection 

• 5mm f/2.5 S-mount lens 

• 3D printed holder that connects to 

LINAC tray 

XML Script to implement: 

• Turn on/off field light  

• Set jaw positions 

• Beam on 

• Rotate gantry 

• Turn on/off laser 

• Treatment couch 

motions 

• kV imaging 

• Set MLC 

Automatic Delivery/Operations 

Courtesy of Cesare H Jenkins 
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Image Processing 

• Image identification and capture 

• Transformation 

• Analysis 

Image identification and capture 

• Known delivery sequence 

• Motion detection algorithm 

Key images were identified based on:  

Light Field  Radiation Field Left Laser 

Transformation 

1. Transform the pixels corresponding to the 

phantom face into a calibrated image 

space 

2. The transformation was determined as the 

linear transform that transforms the 

locations of the four fiducials to their 

aligned locations within the calibrated 

image space 

3. The calibrated images were analyzed to 

identify the locations of salient features 

such as field edges, cross-hairs and lasers. 

• Self-calibration 

• Correct for variations in setup 
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Analysis 

• Field Edges 
-Fit logistic function to find location of half value 

• Crosshairs and lasers 
-Gaussian curve fitting 

• kV and MV images 
   -Image center is projected into the calibrated  coordinate space 
 

Light Field  Radiation Field Left Laser 

Image processing example 

Original images  

Transformed 

and analyzed 

images 

Field edges  Center Cross-Hair 

Jenkins C H et al Phys. Med. Biol. 61 (2016) L29 

• Robust automated performance 

• Accurate 
 Be able to achieve 0.1mm~0.2mm accuracy, Better/Equivalent to current 

clinical practice 

• Repeatable 
 Invariant to setup 

• More Efficient: ~10 min vs. manual 1~2 hours 
 Set up: 7:00 min 

 Plan delivery: 1:21 min 

 Export DICOM: 1:00 min 

 Clean up: 2:00 min 
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Artificial Intelligence and Machine Learning 

 Artificial intelligence (AI) is intelligence demonstrated by 

machines. It perceives its environment and takes actions that 

maximize its chance of successfully achieving its goals. A 

machine mimics "cognitive" functions that humans associate 

with other human minds, such as "learning" and "problem 

solving". 

 

 Machine Learning is an application of AI that provides 

systems the ability to automatically learn and improve from 

experience without being explicitly programmed.  

Stanford University 

Programing vs. Machine Learning 

Machine Learning 

Machine 

Traditional Programing 

Machine 

Model 

Model 
Data 

Data 

Program 

Output 

Stanford University 

Types of Machine Learning 

Supervised 

Learning 

Unsupervised 

Learning 

Reinforcement 

Learning 

All Labeled 

Training Data 

All Unlabeled 

Model 

Model 

Reward or Penalty Model 
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Machine Learning and Deep Learning 

 

Machine learning methods: 

 Linear Regression  

 Decision trees 

 Naïve Bayes classifiers  

 Support vector machine 

 Artificial neural net work 

 Deep learning 

Stanford University 

Machine Learning 

Object 

detection 

  Machine learning with hand-crafted features 

Image 

classification 

Ulcer? 

Normal? 

Bleeding? 

Input 

 data 

Feature  

representation 

Learning 

algorithm 

Stanford University 

 Deep learning methods learn feature representations automatically 

 Achieve good performance 

 

 

Machine Learning 

 

Hear (speech recognition)    See (visual object recognition) Read (text understanding) 
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Machine Learning Applications in PRT @ 

Electron small field output prediction 

 

Knowledge based chart checking 

 

 

 

 

Stanford University 

Electron Output Prediction 

Machine 
Learning 

Algorithm 

Input: differenct small  

/ irregular field sizes 

Prediction 
Model 

Electron 
Output 
Factor 

Test cutout Zhou 

Stanford University 

Electron Output Prediction 

 Scikit-learn package in python.  

 Multivariate Linear regression with augmentation technique 

 Total of 445 measurement data for training and testing 

 The dose output factors for small and irregular electron 

treatment fields were accurately predict  

 Mean relative absolute error 1.57%.  

 R2 metric evaluation of the model is 0.994. 
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No

< T ?

Yes

Anomaly 

score

Anomalous 
plan

Correct 
plan

Test 
Plan

Evaluation

Trained 
iForest model 

database

Selection
Site

Technique

Modality

Optimal 

threshold T

Warning + 
Action

ML for Auto Treatment Plan Check 

Knowledge-based error detection - learned from 

previous treatment parameters – anomaly detection 

Isolation Forest: 

High detection sensitivity 

and specificity 

Linear computational 

complexity 

Low computer memory 

requirement 

F. Liu, et al. Isolation Forest, ACM Transactions on Knowledge discover from data, 2012 

 

Dr Liu 

Stanford University 

Site, technique, modality dependent  

Techniques 

SMLC TANGENTS 

2D TBI 

AP/PA ELECTRON 

BOOST 

3D WEDGED PAIR 

SBRT CSA 

DMLC EN FACE 

Treatment modalities 

MVX 

Electrons 

Major techniques 

2D 

IMRT 

3D 

Treatment sites 

Brain Lung 

Pelvis Breast 

Head & Neck Extremity 

Thorax Pelvic 

Prostate Chest wall 

Abdomen TBI 

CSA Lymph nodal 

Skin Enface 

Stanford University 

Data acquisition and pre-processing 

 A total of 8335 patients with 11726 treatment plans since 2008 were 

acquired from R&V system (Dr. Shi Liu collected data from WUSTL). 

 Parameters to be checked:  

“Site”, “Technique”, “Modality”, “Laterality”, “SSD”, “Fractions”, 

“Fraction_dose”, “Total dose”, “MU”, “MU/cGy”, “Energy”, “Beams”, 

“Segments”, “SegmentsPerBeam”, “Use_MLC”, “CPs”, “CPsPerBeam”, 

“MaxNCPs”, “MinNCPs”, “MaxMUcGyPerBeam”, 

“MinMUcGyPerBeam”, “PA”, “PI”, “PM”, “PMU”, and “PUAA”.    
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Plan 

parameters 

Attributes Data type Attribute possible values 

Treatment site Site Categorical Brain, Breast, Prostate, … 

Treatment 

technique 

Technique Categorical 2D, 3D, IMRT 

Treatment 

modality 

Modality Categorical MVX, Electron 

SSD SSD Discrete 89.45 cm, 94.2 cm, 105 cm, 

… 

Treatment 

fractions 

Fractions Discrete 2, 15, 25, 28, etc 

Fractional 

dose 

Fraction_dose Discrete 180 cGy, 200 cGy, 800 

cGy, … 

Total dose Total_dose Discrete 4500 cGy, 5000 cGy, 5500 

cGy, … 

MU MU Discrete 247, 261, 226, … 

MU/cGy MU/cGy Discrete 1.165, 1.27, 1.589, … 

Energy Energy Discrete 6 MV, 10 MV, 6MeV, 9 

MeV, … 

Total # of 

beams 

Beams Discrete 1, 2, 4, 6, … 

Plan parameters Attributes Data type Attribute possible values 

Total # of 

segments 

Segments Discrete 34, 44, 55, … 

# of segment per 

beam 

SegmentsPerBea

m 

Discrete 1, 6, 7, … 

Use MLC or not Use_MLC Discrete “1” or “0” 

Total # of CPs NCPs Discrete 84, 98, 110, … 

Minimum MU/cGy 

per beam 

MinMUcGyPerBea

m 

Discrete 0.174, 0.344, 0.434, … 

Plan averaged 

beam area 

PA Discrete 40.783, 56.259, … (set 0 for 

non-IMRT plans arbitrarily)  

Plan averaged 

beam irregularity 

PI Discrete 4.684, 3.758 … (set 0 for non-

IMRT plans arbitrarily)  

Plan averaged 

beam modulation 

PM Discrete 0.596, 0.289, … (set 0 for 

non-IMRT plans arbitrarily)  

Plan nomalized 

MU 

PMU Discrete 430, 474, … (set 0 for non-

IMRT plans arbitrarily)  

Plan averaged 

union area of all 

apertures 

PUAA Discrete 87.312, 136.908, … (set 0 for 

non-IMRT plans arbitrarily) 

Stanford University 

Detection method - iForest 

Abdomen plans treated using SMLC with photon external beam in our plan data set.  

(a) A normal plan, A, requires 11 random partitions to be isolated.  
(b) An anomalous plan, B, requires only 4 random partitions to be isolated. 

Normal 

Anomaly 

iForest – random tree structure 
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Training stage 

 For each combination of plans with the same treatment site, technique and modality, 

an iForest model was trained by assembling a number of iTrees.  

 Each iTree was built by recursively and randomly partitioning a sub-sample (𝜙 =
256) of the corresponding training data in each iForest model until all plans were 

isolated to leaf nodes.  

 Inputs: training data set, number of trees 𝑡, and sub-sampling size 𝜙, constituting the 

each iForest model, which is chosen by the user. 

 Output: a dataset of trained iForest models, with each model consisting of plans with 

the same site, technique and modality 

   

Stanford University 

Swamping and masking 

Figure. Illustration of swamping and masking effects introduced by large training data and reduced by sub-sampling, for a 2D (MU/cGy + 

SSD) distribution collected by all prostate plans treated using SMLC with photon external beam. Each blue dot represents a normal plan 

and each red dot represents an anomalous plan. (a) Original training data set including all the plans. (b) A sub-sample of the training data 

with fewer false positives. 

Stanford University 

 Purposely simulated various types of errors into our normal 

plan data set and compute the error detection rate using the 

trained models. 

 Median Absolute Deviation (MAD): 

𝑀𝐴𝐷 = 𝑏𝑀𝑖(|𝑥𝑗 − 𝑀𝑗(𝑥𝑗)|) 

 Error-level mechanism: 

50% and 100% error-levels simply represent that the introduced errors added 

are 50% and 100% of the original attribute-value, respectively. 

 Boxplot       𝑥𝑚𝑖𝑛< 𝑥 < 𝑄1 − 3𝐼𝑄𝑅,  or   𝑄3 + 3𝐼𝑄𝑅 < 𝑥 <
𝑥𝑚𝑎𝑥 

 Manual addition: by a medical physicist 

 

Evaluation stage 
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Results – detection rates 

Error Types Sensitivity (TPR) Specificity (TNR) 

MAD 99.53% 94.1% 

100% Error-level 98.84% 91.8% 

Boxplot 98.12% 90.2% 

Manual addition 92.22% 87.6% 

Table 1. Averaged error detection results for different simulated error types 
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Results – error occurrences 

Table 2. The most & least sensitive/specific parameters for different simulated error types 

 Error Types Sensitivity Specificity 

Most Least Most Least 

MAD PI (99.89%) SSD 

(98.91%) 

MaxN_CPs 

(96.55%) 

SSD (90.21%) 

100% Error-

level 

Total_dose 

(99.62%) 

Energy 

(98.05%) 

NCPs (95.91%) SSD (86.27%) 

Boxplot NCPs 

(98.64%) 

MU/cGy 

(97.92%) 

Segments 

(94.37%) 

MU (81.29%) 

Manual 

addition 

PA (95.56%) Energy 

(90.05%) 

PI (91.15%) MU/cGy 

(79.76%) 

Stanford University 

Results – error occurrences 

Figure. Histograms of obtained (a) false negative plans and (b) false positive plans with occurrences in percentages. 
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Results - ROC 

 (a) MAD errors simulation  (b) 100% Error-level 

High sensitivity and specificity to cover a wide range of 

treatment plan parameter errors. 

Stanford University 

Summary 

• QA for precision radiation theapy has become a 

complicated and very time consuming task 

• Automatic QA has the potential to provide QA 

procedures with high efficiency and less human 

error 

• AI/machine learning is a rapid growing techniques 

and has the potential to optimize the future 

precision radiation therapy QA 

Stanford University 

  

Thank you very much! 


