The Radiation Planning Assistant (RPA)

Automation and Standardization of Planning, Plan Evaluation and System Testing through Advanced Programming in Treatment Planning Systems, AAPM 2018

Laurence Court, PhD
UT MD Anderson Cancer Center

Conflicts of Interest

• Funded by NCI UH2 CA202665
• Additional funding from Varian Medical Systems
• Equipment and technical support provided by:
 • Varian Medical Systems
 • Mobius Medical Systems
• Other, not related projects funded by NCI, CPRIT, Varian, Elekta

Specific goals of the Radiotherapy Planning Assistant (RPA)

• Generate high quality treatment plans that are:
 • Generated from scratch in less than 30 minutes.
 • Internally QA’d in an automated fashion within the system.
• Limit need for the radiation oncology physician to:
 • Delineate the target (location).
 • Provide the radiation prescription.
 • Approve the final plan.
• Limit need for medical physicist to:
 • Check final plan
• Create a system that can be used by an individual with:
 • A high school education.
 • ½ day of training (online and video) on the RPA itself.
 • (dosimetrists still needed for unusual/complex cases)
General philosophy

- Take advantage of Eclipse, but avoid the need for the user to actually use Eclipse
- Use Eclipse functions whenever possible (API)
- Combine with purpose-written tools
- Many functions (e.g. contouring) happen before sending to Eclipse (dicom)
- Others use API
- Internal verification for everything
- Work closely with eventual users
- Deploy at MDACC whenever possible
 - (although project aimed at supporting cancer treatments in low- and middle-income countries)

Primary Planning
- CT Table Removal
- Body Contour Definition
- Marked Isocenter Detection
- Atlas-Based Contouring
- Create Fields
- Optimize Dose
- Calculate Dose
- Plan Documentation

Secondary Verification
- CT Table Removal
- Body Contour Definition
- Marked Isocenter Detection
- Atlas-Based Contouring
- Create Fields
- Optimize Dose
- Calculate Dose

Do primary and secondary methods agree?

Plan Documentation

MD approves plan?

Yes

Transfer Plan to Record and Verify

No

Manual planning

RADIATION PLANNING ASSISTANT

ARIA® DB

RT Data Model

DICOM Services

Dose Calculation Engine

DVH Engine

RPA

Plan Order

Radiotherapy Treatment plan
C#.NET Script Here

Eclipse Scripting API
- RT Data Model
- DICOM Services
- Dose Calculation Engine
- DVH Engine
- ARIA DB

Based on slides from Wayne Keranen, Varian

Plugin Script
- Eclipse calls you
- Operates on current patient

Standalone EXE
- You call Eclipse
- Operates on any number of patients

Detailed Project Highlights:
Head & Neck Autocontouring
- Physician-drawn GTV
- Automatically contoured normal tissue and CTVs
- Supplement with autocontoured planning structures
- Isocenter at target center
- Collimator size/angle based on targets
 - 30° and 330° collimator angles, symmetric fields, 18cm max
 - 90° collimator angle
- WUSTL Rapid Plan Model
- Population Constraints (weights etc.)
- Normalize such that all PTVs receive ≥98% of prescribed dose to 95% volume

Detailed project highlights: Plan Optimization
- Physicist scoring of automatic contours
- Contour edits in clinical practice
- Isocenter at target center
- Collimator size/angle based on targets
- WUSTL Rapid Plan Model
- Population Constraints (weights etc.)
- Normalize such that all PTVs receive ≥98% of prescribed dose to 95% volume
Detailed Project Highlights: Head & Neck Plan Quality

- RPA generated plans are of high-quality, comparable to manually generated plans in target coverage and normal tissue sparing.
- Unacceptable plans are nearly always easily identifiable – and flagged to the user.

Dosimetric impact of OAR autocontouring

- High Dose PTV
- Contralateral Parotid
- Ipsilateral parotid
- Brainstem

Detailed Project Highlights: Use of Multiple Algorithms to Ensure Plan Quality & Safety

- PRIMARY CALCULATION
 - Peak detection
 - Average agreement: 2.6mm
- VERIFICATION CALCULATION
 - Average agreement: 0.6mm
- ANNOTATED MANUAL VERIFICATION
 - Active contour
 - Peak detection
Automatic radiation planning promises to increase availability of radiation therapy worldwide by:

- Reducing the planning burden
- Reducing staff shortages
- Increasing the quality and efficiency of radiation plan creation
- Integrated in-house tools (e.g. autocontouring) with Eclipse and Mobius:
 - API
 - Dicom import/export
 - JSON objects
- The RPA successfully generates acceptable, treatable radiation plans for:
 - Cancers of the uterine cervix (4-field box)
 - Cancers of the head/neck (VMAT)
- Key components of the RPA are being used clinically in the USA:
 - Autocontouring of head/neck normal tissues
 - Autogeneration of cervical cancer field borders
- Aiming to deploy clinically early in 2019

Radiation Planning Assistant (RPA) Project Summary: August 2018

- Principal Investigators:
 - Lawrence Court, PhD – physics (MD Anderson)
 - Beth Beadle, MD/PhD – radiation oncology (Stanford)
 - Lawrence Court, MD – radiation oncology (Stanford)
 - Laurence Court, MD – radiation oncology (Stanford)
 - Rachel McCarron – H&N algorithms
 - Kelly Kitting, MD – GYN, breast algorithms
 - Carlos Cardenas – deep learning
 - Jinhong Fang, PhD – atlas segmentation
 - Peter Bank, MD – radiation physics
 - Ann Klopp, MD/PhD – GYN planning
 - Anja Strozier, MD – GYN planning
 - Serené Shalekman, MD – breast
 - David Followel, PhD – audio/deployment
 - James Korte and dosimetry team
- Commercial Partners:
 - Varian Medical Systems
 - Mobius Medical Systems
- Primary Global Partners: AFRICA
 - Stellenbosch University, Cape Town
 - University of Cape Town, Cape Town
- Primary Global Partners: ASIA
 - University of Santo Tomas, Manila
- Principal Global Partners: USA
 - Varian Medical Systems
 - Mobius Medical Systems

- Radiation Planning Assistant (RPA) Project Summary: August 2018
- Primary Global Partners: AFRICA
 - Stellenbosch University, Cape Town
 - University of Cape Town, Cape Town
- Primary Global Partners: ASIA
 - University of Santo Tomas, Manila
- Principal Global Partners: USA
 - Varian Medical Systems
 - Mobius Medical Systems