

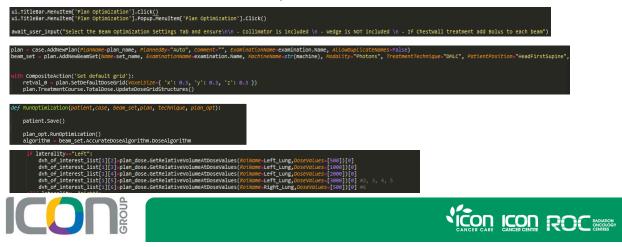
Ben Archibald-Heeren 30/07/2018

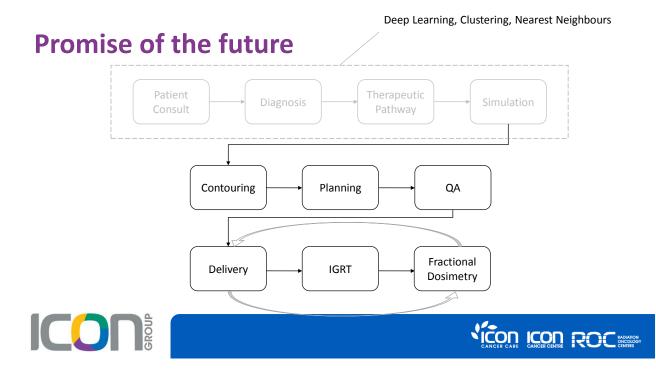
Conflicts of Interest

No relevant financial relationships to disclose

ICON group has a development working relationship with Varian Medical and Breathwell devices

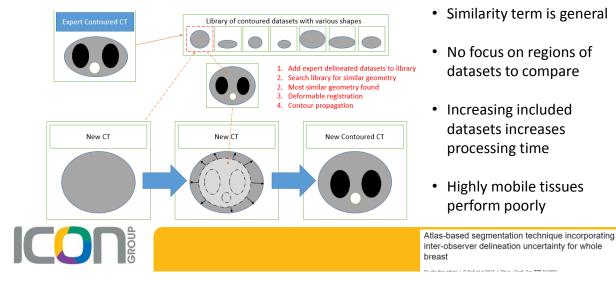
Personal non-financial affiliation with the University of Wollongong

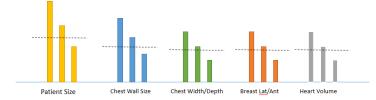

The above working relationships are free of impact for the following research



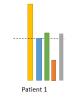
API- Differences from Eclipse

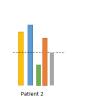
- WPF integration
- More developed with greater functionality
- · Interactions are within the software- live updates of UI





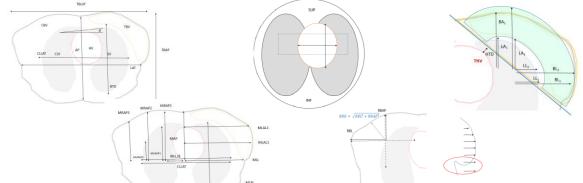
Contouring

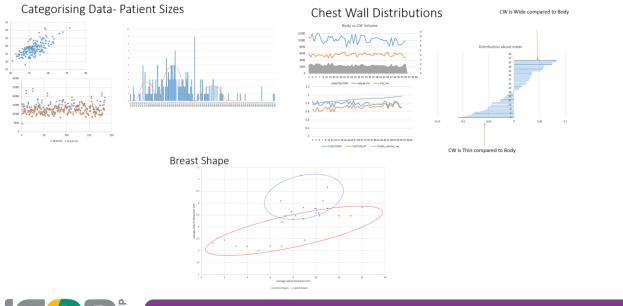

• ABS limitations



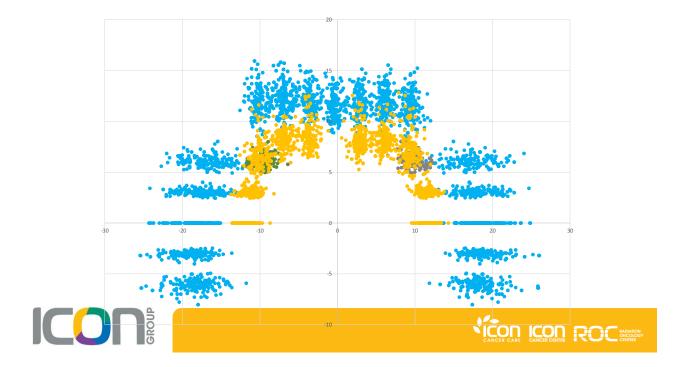
Contouring combined approach

We can then determine a "fingerprint" for individual patients as well as groups of patients

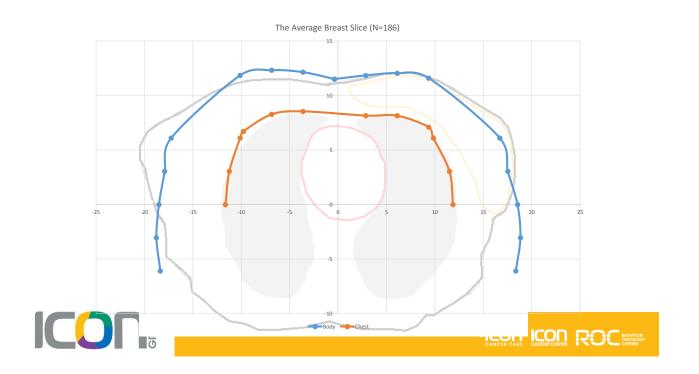


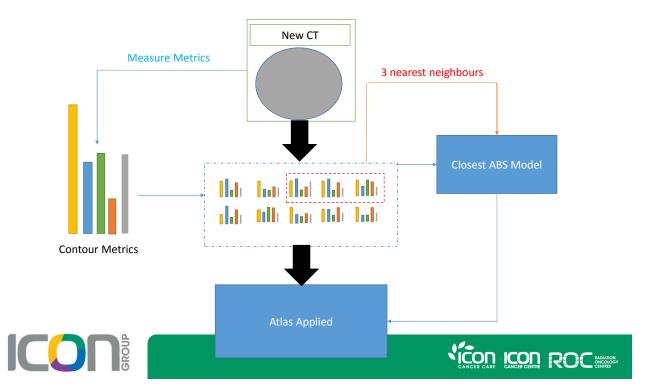

Measurements

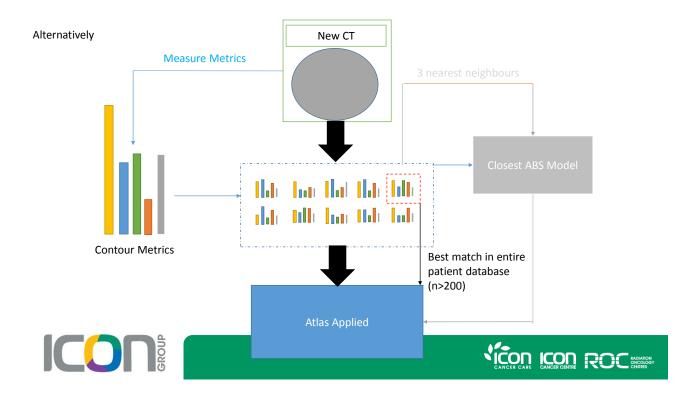
• Using measurement metrics to drive atlas based segmentation selection and post processing to improve final contours

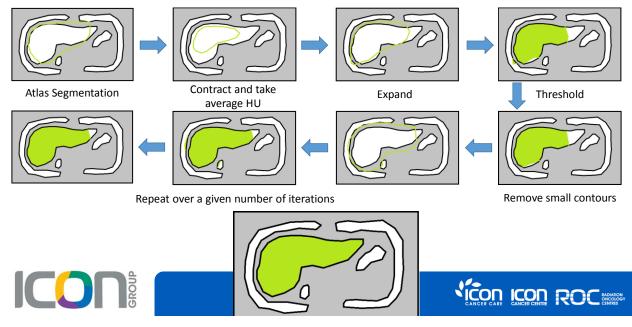


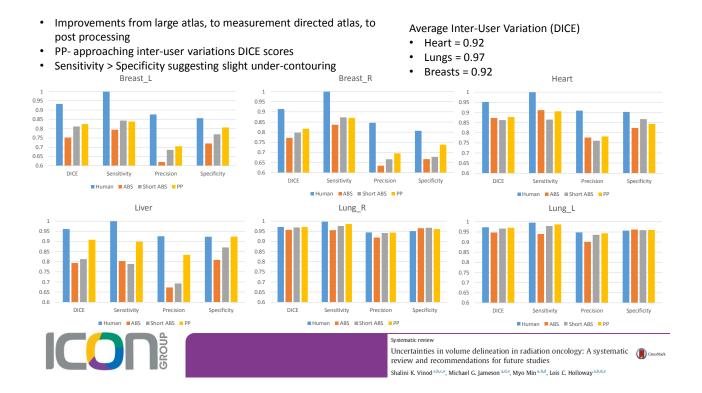
196 metrics with average processing time = 70 seconds +/- 8 seconds (n=30)

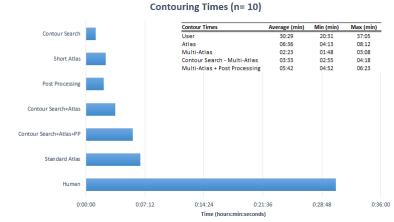










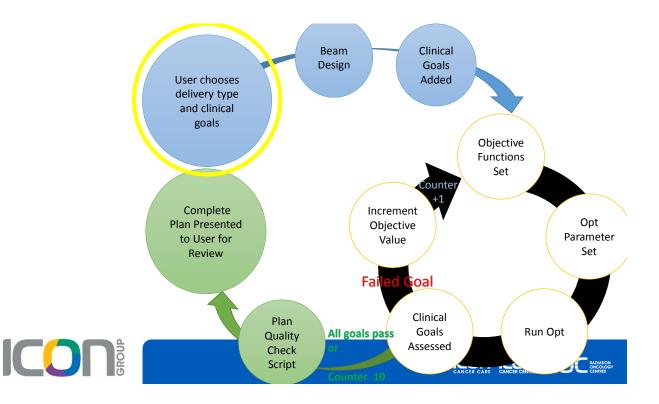


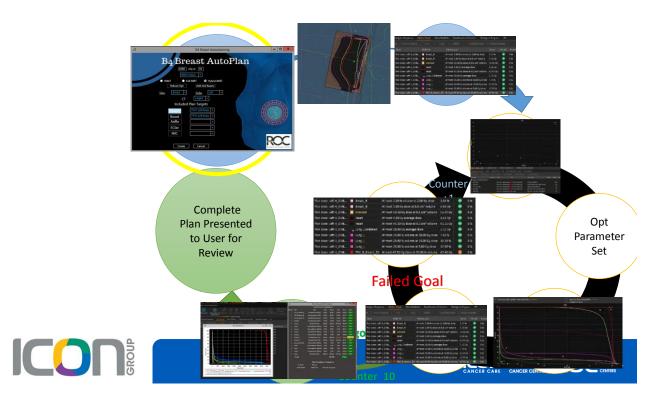
Post-Processing: Iterative Contour Growth

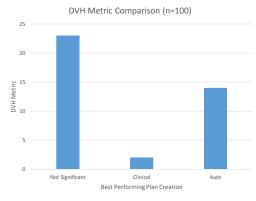
Results- Contouring Time

Incorporating a DICOM folder watch code results in auto-contouring performed before staff return from CT simulation Couch position is set from the couch height DICOM header from the CT image

Auto-Planning


- Auto-contour from CT header
- Oncologist reviews and amends auto-contours
- Hybrid IMRT
- VMAT short arc with robust optimisation
- VMAT breast/chest wall + nodes with robust



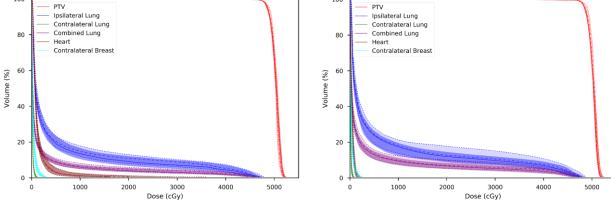


AutoPlan Results

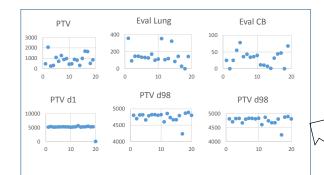
	Per Protocol						
	RTOG		Ev	iQ	London Cancer		
Case Laterality and Target Dose	Clinical	Auto	Clinical	Auto	Clinical	Auto	
Left 5000cGy (N = 32)	25	24	23	26	26	25	
Right 5000cGy (N = 40)	30	31	30	32	30	33	
Left 4240cGy (N = 11)	3	10	9	11	10	11	
Right 4240cGy (N = 17)	10	12	9	11	9	11	
Percent per Protocol	68%	77%	71%	80%	75%	80%	

Time Measured (N=10)	Min	Average	St Dev	Max
Automated Plan (minutes:seconds)	04:48	05:31	00:42	06:21
Clinical Dosimetrist Time (minutes:seconds)	21:36	30:37	04:25	41:07
Relative Planning Time (%)	22%	18%	16%	15%
Time Saving (minutes)	17	25	4	35

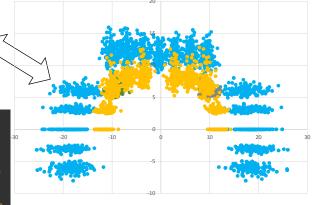

*statistical significance determined as p < 0.05


Excluding Physician contouring of boost targets total average processing time approximately 11min

Lt Breast


100

100

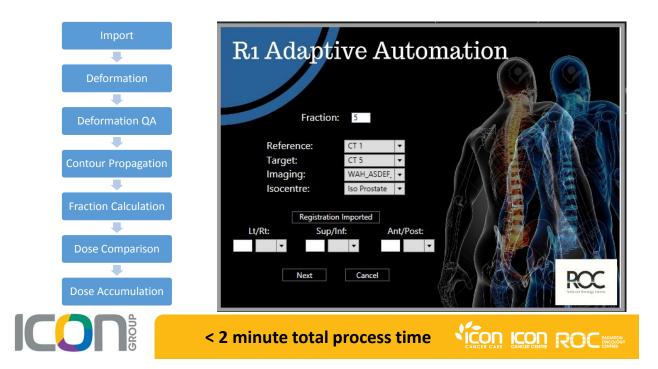


nent Patient Mod Julti-Criteria Optimi		1		Plan_Eval_and	_DVH_G	raphs		-	
				EviQ Score	e Evalu	ation			
1 🗐 🛛 🗧	ලා Good Score against recommendations	Weight	ROI	Goal	Ideal	Accept	Plan	Score	Result
	ization and Robustness Start Continue Stop Reset Cancel Dose brush Reduce OAR dose	3	PTV_R_Breast_50	VolumeAtDose 90.0%	99.0%	90.0%	100.0%	100.0%	Ideal
	nentation	3	PTV_R_Breast_50	DoseAtVolume 95.0%	95.0%	90.0%	97.0%	93.7%	Ideal
B	Plot Window 0	1	PTV_R_Breast_50	DoseAtVolume 0.03cc	107.0%	110.0%	104.0%	98.4%	Ideal
		1	External	DoseAtVolume 0.03cc	115.0%	120.0%	104.2%	99.9%	ldeal
/510 -		3	Lung_L	MeanDose 0cGy	400cGy	500cGy	507.0cGy	100.0%	Ideal
90 -		2	Lung_L	VolumeAtDose 2000cGy	10.0%	16.0%	9.2%	85.7%	ldeal
	But under-coverage compared to plan	1	Lung_L	VolumeAtDose 1000cGy	15.0%	28.0%	12.5%	88.0%	Ideal
80 -	database, potentially sparing lungs a little	1	Lung_L	VolumeAtDose 500cGy	40.0%	45.0%	17.2%	100.0%	ldeal
70 -	too much	3	Lung_R	VolumeAtDose 250cGy	10.0%	15.0%	0.0%	100.0%	Ideal
60 -		2	Breast_R	DoseAtVolume 0.1cc	150cGy	1000cGy		74.5%	Acceptable
		1	Breast_R	DoseAtVolume 5.0%	300cGy	410cGy	128.2cGy	99.7%	ldeal
50 -		2	Lung_Combined	VolumeAtDose 500cGy	10.0%	15.0%	7.4%	94.6%	Ideal
[pd] 40 - 40 - 30 -		3	Heart	VolumeAtDose 2000cGy	3.0%	5.0%	0.6%	99.5%	Ideal
ä		3	Heart	VolumeAtDose 1000cGy	30.0%	35.0%	1.4%	100.0%	Ideal
		3	Heart	VolumeAtDose 500cGy	20.0%	25.0%	4.0%	100.0%	ldeal
20-		3	Heart	MeanDose 0cGy	400cGy	500cGy	153.1cGy	100.0%	Ideal
10 -			Total			96.8%		Pass	
10-									
0-				Plan DataBase Evaluation					
	0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000		For Future	Releases					
	Dose [cGy]		Linked Models	Patietn Size	Chest Size	Lung in fiel			
PTV	/ R Breast 50 — Ipsilateral Lung — Contralateral Lung — Lung Combined — Bre								
<	· · · · · · · · · · · · · · · · ·								
	ă								
				NICON	ICO			RADIA	
				CANCER CARE	CANCER CI	INTRE		CENTR	ES

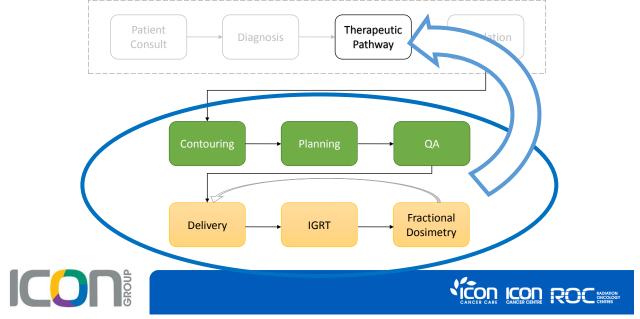
Use of database to QA contours after auto-contouring and to predict both optimisation objectives and expected plan quality

Various machine learning algorithms

Delineated contours have been compared with those of the breast contouring database. Some contours show significant variance from the metrics of the associated patient cohort.


- The Breast_L contour has a significantly larger volume (1232.5cc) than average for similiar patients (895.4cc)

- The Breast_L width (18.3cm) is significantly larger than average (13.3cm) for patients of similiar bony thorax width (22.3cm)


Please check the relevant contours before proceeding to planning

- The automation workflow allows for a technically feasible online adaptive process
- Doctor buy in? Who reviews the deformed CTV on set?
- Eventual accumulated dose statistics to feed into QUANTEC/RayBiology models and therapeutic decisions

Acknowledgments

- Mikel Byrne
- Yunfei Hu
- Trent Aland
- Yang Wang
- Emma Cai
- Nick Collett
- Guilin Liu

Ben.Archibald-Heeren@roc.team

