Educational Objectives

• Radiation dosimetry in diagnostic imaging
 – Review current state of patient specific dosimetry
 – Discuss strategies to aggregate radiation dose in multi-modality imaging
 – Provide examples for COG based
 – Neuroblastoma & Wilms' tumor patient populations
 – Discuss dose management strategies and limitations

• Radiation dosimetry for Image Guided Radiotherapy (IGRT)
 – Discuss current use of imaging during therapy
 – Provide examples for dose values
 – Discuss dose reduction strategies for IGRT

Educational Objectives

• Goal: calculate radiation dose burden from all forms of imaging
 – Dx: X-ray, CT, Nuc Med, PET & Fluoroscopy
 – Tx: CBCT, X-ray, orthogonal X-ray, fluoro

• Challenge to understanding complete dose picture involves:
 – Data collection & interpretation
 • Each modality has unique geometry constraints
 • Each modality has unique dose descriptors
 • How do we collect and analyze the data?
Data Collection: National & Local

- National databases
 - ACR, National radiology data registry (NRDR), Dose Index (> 50 M studies)
 - Bayer, all customers, state of NJ, U of California hospitals
 - Siemens, all customers

- Local databases (limitations):
 - Only account for CT radiation dose
 - Some account for fluoroscopy & Nuclear Medicine/PET but do not aggregate the doses
 - A Walk Through the Market Dr. Sarah McKenney (SPR/RSNA)
 - 16 vendors
 - https://goo.gl/CMRgpt

Data Interpretation

- Infrastructure is present for data collection
 - Lacks aggregation of all ionizing radiation modalities

- Limited means to compare inter-modality imaging dose
 - Each modality has its own dose metric

CTC Tvol, DLP, SSDE, air kerma, KAP/DAP, EI/DI, KAP/DAP, MBq/mCi

Effective Dose
 - Population based
 - Age/sex independent

Data Interpretation

- How can we be more patient-specific for dosimetry?
 - Develop the science to relate each dose metric to organ dose

CT
 - CTDvol, DLP, SSDE, air kerma, KAP/DAP, EI/DI, KAP/DAP, MBq/mCi

Organ Dose
 - Patient specific
 - Age/sex/weight/size dependent
Computed Tomography

- Calculate patient dose from CT examinations
 - Monte Carlo (Gold Standard)
 - Patient-specific requires organ-based segmentation
 - Fully automated (machine learning) tissue segmentation
 - Accuracy: liver 0.99, fat 0.98, muscle 0.94, solid organ 0.75, blood/contrast 0.82, and bone 0.90
 - Still need fully automated organ segmentation

- Population-specific requires computational phantoms
 - Size specific dose estimate (SSDE*)
 - Limitation: head SSDE not defined yet

*Nuclear Medicine & PET

- Radiopharmaceutical kinetic models derived for age specific biodistribution
 - Derived from MIRD formulation
 \[
 d(r, T) = \sum_i \left(\frac{1}{A_i} \right) \left(\frac{1}{\rho_i} \right) \left(\frac{1}{\phi_i} \right) \left(\frac{1}{\gamma_i} \right) \left(\frac{1}{\alpha_i} \right)
 \]
 - Calculated by MIRDOS/Onda software
 - Online calculators
 - RADAR website & SNMMI website**
 - Take ICRP discretized data
 - Fit the data for patient dosimetry of all ages
 \[
 D_{\text{organ}}(mc) = PD(\text{mc}) + 37 \left(\frac{3}{37} \right) \left(\frac{1}{\phi_i} \right) \left(\frac{1}{\gamma_i} \right) \left(\frac{1}{\alpha_i} \right)
 \]
 - PD = pharmaceutical dose
 - A = ICRP organ dose factor
 - B = organ specific parameter (e.g., colon = 0.50)

*http://www.doseinfo-radar.com/RADARDoseRiskCalc.html
**http://www.snmmi.org/ClinicalPractice/doseTool.aspx?ItemNumber=11216&navItemNumber=11218
X-Ray and Fluoroscopy

- Calculate patient dose from DR examinations*
 - Fluoroscopy mostly the same except uses dose rate
 - (1) characterize machine output & (2) use examination metadata
- \(ESD = k_{\text{air}} \times BSF \times (SSD)^2 \times \mu_{\text{en}} \times \rho_{\text{air}} \);
 - \(ESD \) ≡ entrance skin dose
 - \(k_{\text{air}} = 0.0093 \times k_{\text{Wp}}^2 - 0.0165 \times k_{\text{Wp}} \times m_{\text{As}} \)
 - \(BSF = 0.18 \times \ln(k_{\text{Wp}}) + 0.57 \)
 - \(SSD = \text{STD} - \text{thickness}_{\text{patient}} \); \(\text{STD} \equiv \text{source to table distance} \)

*Brady, SL & Kaufman, RA; Med Phys 42(5) 2015, 2489 - 2497

X-Ray

- To calculate other organ dose:
 - Monte Carlo (PCXMC) code & mathematical phantoms*
 - Create organ/skin conversion factors
 - Apply factors to your institutional ESD

*Ladia et al, J of physics conf series 637 (2015) 012014

Aggregate Patient Organ Dose

- IRB approved retrospective study
 - Neuroblastoma: 74 patients
 - Wilms tumor: 80 patients
Diagnostic Ionizing-radiation Examinations (n = 45±11)

- XR (n = 28±8)
 - 1.6 mSv (~0.06 mSv/exam)
- CT (n = 17±6)
 - 13 mSv (~3 mSv/exam)
- SPECT/CT (n = 0)
- PET/CT (n = 0)

Omitting Pelvic CT from routine off-therapy follow-up
- Pelvic relapse symptomatic
 - Dose savings: 10-45%

Diagnostic Ionizing-radiation Examinations (n = 51±9)

- XR (n = 18±11)
 - 0.4 mSv (~0.02 mSv/exam)
- CT (n = 16±4)
 - 45 mSv (~3 mSv/exam)
- SPECT/CT (n = 14±1)
 - 126.2 mSv (~9 mSv/exam)
- PET/CT (n = 3±3)
 - 60.2 mSv (~12 mSv/exam)

Omitting chest CT from routine off-therapy follow-up
- Chest relapse symptomatic
 - Dose savings: 45%

Dose Management Strategies

Multi-modality general dose management strategies

CT
- Size-based optimization (TCM, ODM, etc.)
- Enhanced reconstruction algorithms (iterative recon, deep learning)

XR
- Size-based protocols
- Increased filtration

Fluoro
- General fluoro dose rates ≤ 7.5 fps (line placement can be as low as 1-2 fps)
- Enhanced filtration & software (smart denoising algorithms)
- Shorter pulse widths for peds

PET & SPECT
- Weight-based pharmaceutical dosing
- New digital technology has the potential to reduce injected dose by
 - Lower CTAC dose
Image Guided Radiotherapy (IGRT)

- IGRT has become standard in most radiotherapies
 - Portal imagers
 - X-ray/fluoro/cone beam flat panel system
 - Floor mounted orthogonal system
- Imaging for IGRT is often performed daily
- Need to consider implications for imaging for therapy delivery
 - Dose to sensitive organs, secondary cancers, etc.
- AAPM Reports 95 & 180
 - TG180: recommend considering impact of therapy regimen when imaging dose ≥ 5% therapeutic dose (PVT)
 - E.g., CBCT can add upwards of 1-3% of PVT total dose

Image Guided Radiotherapy (IGRT)

- Cone beam CT (CBCT)
 - Exposes normal tissue when used
- MV-CBCT using EPID
 - Can exceed 100 mGy
 - Siemens Artiste has 4.2 MeV e-carbon target
 - Improved soft tissue contrast
 - 1/3 MV radiation dose
- kV-CBCT (e.g., OBI or XVI)
 - Typically 15-60 mGy (lower by ~10x from a decade ago)
 - Better dose management
 - Lower kV (110 vs. 125 kV)
 - Better collimation
 - Sparse angle reconstruction (e.g., 200 views vs. 360)

Image Guided Radiotherapy (IGRT)

- Planar x-ray
 - Single plane & fixed floor orthogonal units
 - 10 mGy
 - Use of Bow-tie filters*
 - Improves image quality & reduces dose
 - In some cases the # of acquired planar images may exceed 80 treatments**

- Fluoroscopy
 - $D \propto \text{time}$
 - 5-11 mGy/min (30 fps, 100 – 120 kVp @ isocenter)
 - Dose reduction using pulse rates < 30 fps

* Ding and Munro; Radiother Oncol. Jul 2013;108:91–98
** TG180
Image Guided Radiotherapy (IGRT)

- AAPM Report 95: The management of imaging dose during image-guided radiotherapy (’07)
- Estimated effective dose for a treatment regimen (e.g. 30 fractions)*
 - Daily pre-treatment CTs (40-400 mSv)
 - 2 pairs of MV portal images (40-400 mSv)
 - 2 mins of daily fluoro (40-120 mSv)
 - 100 orthogonal kV images (10-100 mSv)

Example (combination real & hypothetical)

- mIBG avid Stage 3 NB patient (represents a generic high risk patient)
 - Dx imaging over 4-5 years resulted in
 - X-ray: 0.5 mSv
 - CT: 45 mSv
 - PET/CT: 60 mSv
 - SPECT/CT: 126 mSv
 - Tx imaging from a 14 fraction course
 - Daily CBCT setup: 60 mSv
 - Daily fluoro tracking: 20 mSv
 - Total dose burden ~300 mSv

Conclusion

- Pediatric Tx patients are most sensitive to secondary cancer
 - Alternative is most likely death
 - No question that radiation dose from imaging is beneficial
- No longer can we say imaging dose is negligible in the context of therapy
 - Aggregate Dx imaging along with Tx imaging
- Still room to adopt better dose management
Conclusion

- Still need better dose reporting and storage capabilities
- Scientific field continuing to develop methods to combine multi-modality imaging dose
- Need to aggregate all imaging dose throughout hospital enterprise
 - Radiology
 - Rad Onc
 - Ortho
 - Cardiology
 - etc.

Thank you

samuel.brady@cchmc.org