General Outline and Functionality of Software Tools: Goals & Analytics

Frank Rath
University of Wisconsin – Madison
fjrath@wisc.edu
Disclosures

- Founding member of Center for the Assessment of Radiological Sciences (CARS) – 501(c)(3) and PSO
- I am an engineer
What I will cover

- Knowledge Based Learning Systems (KBLS)
 - Incident Reporting Systems (ICR)
 - Risk based process analytics systems – TG 100 tools – (repository)
 - Advanced capabilities
- Improved
 - Processes, technology applications and Radiation Therapy (RT) equipment and devices
 - Safety
 - Treatment quality
 - Industry and clinical collaboration
 - Safety culture
Knowledge Based Learning Systems (AKA Knowledge Based or Expert Systems)

- Computer program that reasons and uses a knowledge base to solve complex problems
- Comprised of three sub-systems
 - Knowledge base
 - User interface
 - Inference engine
- Recent developments in computer science (gaming theory and simulation) and big data analytics are capable of producing amazing results
Knowledge Base

• Must be designed to meet all functional use requirements

• Top level requirements
 • Improve RT safety
 • Improve RT treatment quality
 • Facilitate and encourage collaboration on process and technology development and equipment/devise design quality
 • Improve safety quality in RT/RO community
 • Easy to use – input and output ends
 • More
Knowledge Base – Incident Reporting System

• Key requirements*
 • Non-punitive
 • Confidential
 • Independent
 • Timely (and risk oriented)
 • Expert analysis
 • Credible
 • Systems-oriented
 • Responsive

Timely and Risk Oriented

• Incidents, near misses and errors need to be analyzed quickly (Root Cause Analysis – RCA) by experts and results quickly disseminated to the RT/RO community (days not weeks or longer with an ultimate response time goal of hours)

• All hazardous (or potentially hazardous) events should be acted on regardless of their frequency.
Exert Analysis

- RCA performed by experts in RT/RO
- Develop specific recommendations to improve quality systems and/or quality management
- Provide immediate solutions to reporting clinics and feedback to vendors
System Oriented

- Look beyond the process and technology level for system level causes of problems
- TG 100 – high frequency of system level causes of potential failure modes
 - Lack of communication
 - Lack of formal procedures
 - Lack of time/stress
Responsive

- Drive real change – demonstrate that it improves safety and treatment quality – develop actual metrics to measure effectiveness
What’s Possible?
Develop a KBLS That Effective Meets the Needs and Requirements of All RT/RO Stakeholders
Enrich the ICR Data Base

• Expand ICR beyond incidents, good catches and errors to include
 • Problems with equipment/devices/software – feedback to Vendors
 • Suggestions for process improvements
 • Information on clinical “work arounds”
 • Other
Risk based process analytics systems – TG 100 tools – (Repository)

- Expand Knowledge Base beyond Incident Reporting System – risk based process analyses results
- Clinics provide the results from TG 100 risk based process analyses
 - Process Maps
 - Failure Mode and Effects Analysis (FMEA)
 - Fault Trees
- Vetted by experts
• Stored in a “repository” in the KBLS
• An excellent source of information about clinical processes and technology issues – valuable information for vendors
• Proactive
• VRPUSC initiative – cross functional TG 100 tools analysis for IGRT including regulator, physicists from academic and community clinics, vendor engineer
• Incident Reporting System + Risk Based Process Analytics data base outperform either when identifying high risk process step *

• Reference – Validating FMEA output against incident learning data:
• Data analytics algorithms will identify trends, high risk areas of processes, problems with emerging technologies and device/equipment/software problems or issues
Knowledge Based Learning Systems - Capabilities

- Issue warnings and advisories quickly for clinical process and technology related problems
- Expert analysis (including RCA of all reported incidents)
- Minimum lag time between an incident being reported and recommended actions
• Should be searchable across treatment processes, technologies, treatment modalities, etc. – important for effective collaboration between vendors and clinics (both academic and non-academic)
• Provide knowledge for research
• Improve safety culture in RT/RO clinics by bringing the players in the RT/RO community closer together and eliminating the “silos” that exist in the community
• Make it easy to enter data into the KBLS
• Use bar code and group technology analysis techniques to simplify input of data to the KBLS
• Facilitate and encourage the reporting of occurrences – especially in small clinics – who could use the most help
• Occurrence – specific treatment plan requires patient repositioning due to gantry interference when switching between beams.
 • Need to alert treatment staff that the treatment needed to be stopped for repositioning was known and indicated by a stop sign and the gantry stopped when it appeared on the screen
 • This particular treatment plan called for planar imaging and that required gantry movement that would impact the patient
 • For this combination of requirements and steps the system stop sign appeared on the screen but the gantry did not stop
• Potential impact – gantry impact with patient’s head causing severe injury (once would be too many occurrences)
• Root cause unknown (design issue) but definitely requires immediate attention and RT community warned
• KBLS provide feedback to vendors involved
What the Future Might Be

• Example of Big Data Analytics – “Introduction to Watson and Watson Explorer Content Analysis”, presented by Amit Saha, IBM at the 29th Annual Product Liability Conference, University of Wisconsin – Department of Engineering Professional Development, September 19-21, 2018

• “How content analytics helps manufacturers improve product safety and save lives”

• Auto manufacturers can now isolate and pinpoint the cause of safety issues through data from the National Highway Traffic Safety Administration (NHTSA) through basic out-of-the-box analysis tools.
• Automakers were able to identify a potential problem with the power steering assist for a number of car models across several car manufacturers!
• Recalls were issued prior to anyone being injured.
What the Future Could Be

Current State of Affairs

- RO-ILS ICR has been up and running for several years
- Incidents are being reported and analyzed
- Not currently capable of the advanced capabilities described
- CARS ICR also in use
- CARS currently developing a KBLS
- Looking for support and input from the vendor community and general healthcare community (EPIC)
- Opportunity for both CARS KBLS and RO-ILS to effectively co-exist