Non-Invasive Quantification of Immune Checkpoint Blockade at the Tumor

Sridhar Nimmagadda, Ph.D.
Radiology and Radiological Science

Advanced squamous-cell NSCLC

Advanced urothelial carcinoma

Advanced melanoma

Status of Immune Checkpoint Therapeutics

Combination clinical trials
PD-1/PD-L1

Number of approved biomarkers to guide therapy: 2

N Engl J Med 2017; 376:1015-1026
N Engl J Med 2017; 377:1345-1356

Positron Emission Tomography (PET)

Target mapping (expression levels, enzyme activity)
Probe disposition in the tumor and other tissues (PK)
Changes in target expression (receptor density etc.)
Modulation of the biochemical pathway (effector pathways)
Desired biological effect
Clinical response

Tracer doses

$[^{11}C]$carfentanil (m opioid receptor ligand)

5.5×10^{-6} mg/kg mass dose

Dose for adult male elephants (1 Ton) ~ 10 mg

Molecularly targeted high affinity probe

The Cancer Immunity Cycle & Imaging Targets

Chen and Mellman, Immunity, Volume 39, Issue 1, Pages 1-10

- PD-L1
- CD8
- Granzyme B
Programmed Cell Death Ligand 1 (PD-L1)

A target for imaging immune checkpoint blockade

- Expressed in a variety of cancers
- Associated with aggressive disease
- Poor prognosis and poor survival.
- Three FDA approved antibody therapeutics
- PD-L1 IHC is a companion diagnostic
- Imperfect biomarker?
 - 50% of NSCLC are PD-L1 +ve
 - ~8% of PD-L1 -ve patients show response

Imaging PD-L1 using Antibodies

SPECT and PET Imaging with Atezolizumab

PD-L1 Detection with a Peptide

$[^{64}\text{Cu}]\text{WL12}$
PD-L1 Imaging Agents with Improved Image Contrast for Clinical Translation, [^{18}F]DK222

TNBC models

MDA-MB231 xenografts (PD-L1 +ve)
SUM159 (PD-L1 –ve)

High contrast PD-L1 specific images within 60 min

Imaging Functional Activity of T-cells using Granzyme B

- Lymphocyte granule protease
- Essential for cytolytic activity of T-cells
- Increased GrB activity at the disease site

^{68}Ga-GZP PET Imaging Quantitatively Detects Response to I-O Therapy

- Ga-GZP PET Imaging
- Quantitative detection of response to I-O therapy
- Treated Responder
- Treated Non-Responder
- Vehicle

[Image of tumor model with PET imaging results]

[Graph showing tumor/muscle and tumor/blood ratios over time]
Success of Anti-cancer Therapies

• Cancer and immune cell heterogeneity (Target expression, mutational burden, gene rearrangements, TCR clonality etc.)

• Drug activity (affinity, selectivity, ADME, drug access, target engagement, biological activity)

Success of Anti-cancer Therapies

Cancer and immune cell heterogeneity
• Programmed death-ligand 1 (PD-L1)
• MSI-high
• Tumor mutation burden
• CD8+ cells
• Neoantigen burden
• T-cell clonal diversity
• Multiplex IHC
• Microbiome

Drug activity at the tumor

Dose-Exposure-Response Relationships

Dose

Exposure

Response
Status of Immune Checkpoint Therapeutics

Agents in development

PD-1/PD-L1

Antibody Therapeutics

FDA approved antibodies ~79
Oncology focused ~35
mAbs, ADCs, bi-specific antibodies, fusion proteins

Advantages
• Long half-lives
• High therapeutic index

Disadvantages
• Large size
• Development of anti-therapeutic antibodies
• Poor tissue penetration-solid tumors
• Expensive treatments

Peripheral T cell vs. Tumor Target Occupancy

Because peripheral-blood T cells express PD-L1, it is possible to assess in vivo receptor occupancy by anti-PD-L1 antibody as a pharmacodynamic measure. Median receptor occupancy was more than 65% for the doses tested. Although these studies provide a direct assessment and evidence of target engagement in patients receiving anti-PD-L1 antibody, relationships between receptor occupancy in peripheral blood and the tumor microenvironment remain poorly understood.
Drug-Target Engagement

Drug + Protein → Protein-Drug Complex → Biological effect

Measurements in Cells and Tissues
The Cellular Thermal Shift Assay
Mass Spectrometry
Fluorescence Anisotropy Imaging

No real-time information, multiple measurements across multiple lesions are difficult

Structural analysis indicates an overlap between mAb and peptide interaction surfaces on PD-L1

PD-1
WL12

Atezolizumab
Avelumab
Durvalumab
BMS936559
KM035 (nanobody)

PD-L1

Structural analysis indicates an overlap between mAb and peptide interaction surfaces on PD-L1

Target Engagement by Antibodies

- Free fraction PD-L1 levels
- Effect of combination therapy on PD-L1 levels
- Dose optimization
- Target potency of different antibodies
- Dose-Exposure-Response relationships
- Drug development and evaluation - Biosimilars

Antibody vs. peptide<1 nM vs. ~ 20 nM
Slow vs. Fast PK

Courtesy: Sports Illustrated
Free Fraction PD-L1 Levels Quantified using [\(^{64}\text{Cu}\)]WL12 after Atezolizumab Treatment

\([\text{PET Imaging}}\]

\([\text{Ex Vivo Biodistribution}}\]

\([\text{PD-L1 IHC}}\]

\([^{64}\text{Cu}]WL12\)-PET: A common denominator to Quantify PD-L1 Therapeutic Activity at the Tumor

\([\text{PET Imaging}}\]

\([\text{Biodistribution}}\]

\([\text{PD-L1 IHC}}\]

Summary and future directions...

- High affinity and high contrast imaging agents for quantification of target expression and dynamics
- A PD-L1 specific imaging agent to determine mAb kinetics at the tumor
- Dose selection, optimization and intensification
- Quantitative relationships between dose \(\rightarrow\) tumor and tissue exposure \(\rightarrow\) response and toxicity
- Drug development and evaluation
Acknowledgements

- Dhira Kumar, Ph.D.
- Ala Lisok, M.A.
- Sagar Shatika, Ph.D.
- Samit Chatterjee, Ph.D.
- Wojtek Lesnai, Ph.D.
- Matt Gabrielson, B.S.
- Bryam Wharram, M.S.
- Ravindra De Silva, Ph.D.
- Polina Sysa-Shah, M.D.
- Michelle Miller, Ph.D.
- Martin Pomar, M.D., Ph.D.
- Zaver Bhujwalla, Ph.D.
- Ronnie Moase, Ph.D.
- Catherine Foss, Ph.D.

- Sandra Gabele, Ph.D.
- Elizabeth Jaffe, M.D.
- Lesha Emers, M.D., Ph.D.
- Patrik Foa, M.D.
- Edward Gabrielson, M.D.
- John Poiker, Ph.D.
- Charlie Rudin, M.D.
- Viola Alaj, M.S.

- Univ of Maryland
- Joga Gobburu, Ph.D.
- Elies Dahmane, Ph.D.

- MSKCC
- Joga Gobburu, Ph.D.

- JHU
- Dhiraj Kumar, Ph.D.
- Ala Lisok, M.A.
- Sagar Shatika, Ph.D.
- Samit Chatterjee, Ph.D.
- Wojtek Lesnai, Ph.D.
- Matt Gabrielson, B.S.
- Bryam Wharram, M.S.
- Ravindra De Silva, Ph.D.
- Polina Sysa-Shah, M.D.
- Michelle Miller, Ph.D.
- Martin Pomar, M.D., Ph.D.
- Zaver Bhujwalla, Ph.D.
- Ronnie Moase, Ph.D.
- Catherine Foss, Ph.D.

Funding

- R01CA166131
- P41EB024495-01
- The Alexander and Margaret Stewart Cancer Research Fellowship
- DOD BCRP Breakthrough Award
- JHU Career Catalyst Award
- Hopkins-Allegheny Cancer Research Fund

- Cu64 production
 - Univ. of Wisconsin and Washington Univ.

Thank you!