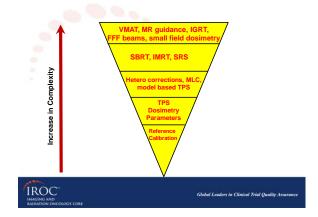


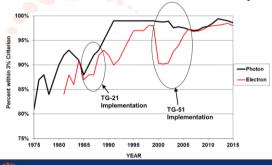
One of the most important contributing factors to errors in radiotherapy dose delivery is

Human Error

The WHO report on "Radiotherapy Risk Profile" states that 60% of all radiotherapy incidents are attributable to human error


Global Leaders in Clinical Trial Quality Assurance

As Human Medical Physicists


- Must have appropriate education and training
- Have a commitment to be better than average
- Know the difference between
 - Prescriptive actions vs. Understanding before implementation
- Be a critical thinker, not a robot! (don't take things for granted)
- In your busy clinic, take the time to investigate and understand

Global Leaders in Clinical Trial Quality Assura.

Evaluation of Reference Beam Output

IROC Global Leaders in Clinical Trial Quality Assurance MOMENTO ONCOLOGY COME

Implementation of TG-51

- TG-21 was very detailed
- Each factor listed so you understood what went into calibrating a beam
- TG-51 was developed to be very prescriptive
 - A lot of the detail is behind the scenes
- Did we lose that understanding and ability to investigate reasons for errors?
- Do we know what to look for?

Global Leaders in Clinical Trial Quality Assurar

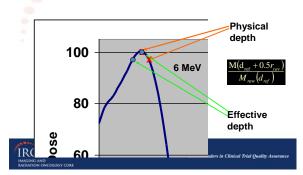
Charge Measurements

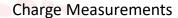
- Electron beam gradient (Pgr) correction factor
 - No correction for photon beams since correction included in k₀
 - Only for cylindrical ion chambers
 - Ratio of readings at two depths

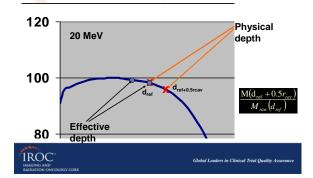
- The reading at $\rm d_{ref}+0.5r_{cav}$ should have the same precision as the reading at $\rm d_{ref}$ since:

Dose = $M(d_{ref}) \cdot (many factors) \cdot \frac{M(d_{ref} + 0.5r_{cav})}{M(d_{ref})}$

Global Leaders in Clinical Trial Quality Assurance


Charge Measurements


- Electron beam gradient (P_{gr}) correction factor
 - $E < 12 MeV; P_{gr} > 1.000$
 - E \geq 12 MeV; $P_{gr} \leq$ 1.000
 - Why? Because for low electron energies $d_{\text{ref}} = d_{\text{max}}$ and this places the eff. pt. of measurement in the buildup region thus a ratio of readings greater than 1.000.
 - At higher electron energies d_{ref} is greater than d_{max} and as such the eff. Pt. of measurement is on the descending portion of the depth dose curve thus a ratio of readings less than 1.000.



Global Leaders in Clinical Trial Quality Assuran

Charge Measurements

Performing required QA tests

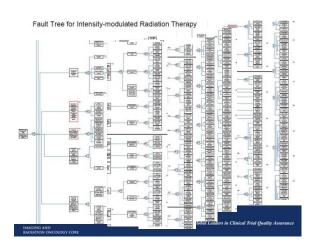
- One performs the required annual QA tests.
- Check that off the list as **DONE**
- No effort was made to compare to clinical values or
- Comparison done but no action taken

Main explanation – it is on my TODO list or do we just not know how to critically resolve the error

Global Leaders in Clinical Trial Quality Assuran

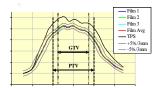
Other Examples of Errors

- Use of wrong chambers for small field dosimetry
- Incorporation of FS and depth dependence for WFs (especially for Elekta machines)
- Following, explicitly, manufacturer's procedures for acceptance testing
- Use of standard dosimetry data for TPS not knowing its limitations

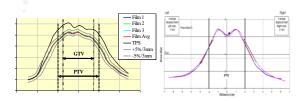

Global Leaders in Clinical Trial Quality Assura.

What about <u>Advanced Technologies</u> in Radiotherapy	
TRACKING TPS HETERO CORRECTION	
IGRT WORM	
IMRT	
GATING SBRT Respiratory Control	
IROC IMAGINO AND IMAGINO AND IMAGINO ONCOLOCY CORE	
Imaging, Planning and Delivery - QA	
required at each step	
Positioning Image Structure Insertment	
and Acquisition (CT, MR) Structure Segmentation planning	-
File Plan Position treatment	
transfer and management validation verification delivery	
IROCC Global Leaders in Clinical Trial Quality Assurance BADBATION ONCOLOGY COM	
BADIATION ONCOUNCY CORE	
Imaging, Planning and Delivery Can we troubleshoot the process or do I believe the	
manufacturer that all is fine?	
Black Box	
	
IROC*	

Understanding Complex treatments


 The best way to fully understand where things can go wrong is to perform an FMEA analysis
 A la TG-100

CyberKnife Findings


- Pencil Beam Algorithm in lung showed a <u>13-15% error</u> (overestimation) compared to phantom TLD in target
 - Profiles were correct shape, but wrong absolute dose.

CyberKn	1+^ L	INA	INNO
CVDEINI	пег		111(15

· Implementation of Monte Carlo algorithm in lung resulted in results that were ±2%.

Global Leaders in Clinical Trial Quality As

Thus the need for an end-to-end QA audit tool to verify the intended treatment goal.

> **Deliver the correct dose** to correct location as planned

Even with this QA tool, it can be very difficult to determine the exact cause of an error

Summary

- · Radiotherapy is a continually evolving complex and highly technical treatment modality that, unlike other therapies, deliver doses to the tumor that can be quantified precisely.
- Critical thinking and investigation are needed to ensure that errors are not introduced.
- · Medical physicists must understand the process otherwise errors will not be resolved.
- · We are scientists who must continually evaluate and improve, not just button pushing technicians.

Thank you	
Questions?	

IROC" IMAGING AND RADIATION ONCOLOGY CORE	Global Leaders in Clinical Trial Quality Assurance
---	--