# Opportunities for Working With or Creating Industry

**Thomas Rockwell Mackie Emeritus Professor** Depts. Of Medical Physics, Human Oncology, **Engineering Physics, and Biomedical Engineering (Affiliate)** and Emeritus Director of Medical Engineering Morgridge Institute for Research **University of Wisconsin** trmackie@wisc.edu





#### **Geometrics and TomoTherapy**

Geometrics (1992-1996) Gehring (CEO), Reckwerdt, Sanders, Mackie (Chairman)

- Pinnacle<sup>3</sup> Radiation treatment planning.
- ~1/4 of cancer patients planned with this software for ~20 years

TomoTherapy (1997-2011) Mackie (Chairman), Reckwerdt (President)

- **Radiation treatment**
- planning and delivery. \$1.0 B IPO (2007).
- > 1 million patients
- treated





# **Role of Industry in Innovation**

- Technical solutions to solve a problem usually indirectly or directly involve a company.
- For example, climate change will not be solved by social consciousness alone but by companies developing convenient and affordable energy technologies that do not involve fossil fuels.
- Medical innovations are the same, if only because regulatory clearances usually require resources only affordable by the private sector.



|                                                      | Pure<br>basic | Lean.<br>towards<br>basic | Equally<br>basic and<br>applied | Lean.<br>towards<br>applied | Pure<br>applied | Total | n      |
|------------------------------------------------------|---------------|---------------------------|---------------------------------|-----------------------------|-----------------|-------|--------|
| Teacher training and education                       | 7             | 12                        | (32)                            | 29                          | 19              | 100   | 677    |
| Humanities                                           | (28)          | 21                        | 26                              | 16                          | 9               | 100   | 1,347  |
| Social/behavioural sciences                          | 19            | 19                        | 24                              | 23                          | 16              | 100   | 1,127  |
| Business and economics                               | 8             | 15                        | 31                              | 28                          | 18              | 100   | 980    |
| Law                                                  | 18            | 20                        | (34)                            | 18                          | 10              | 100   | 301    |
| Life sciences                                        | 22            | (26)                      | 23                              | 17                          | 12              | 100   | 694    |
| Physical sciences, mathematics,<br>computer sciences | 18            | 24                        | 29                              | 19                          | 10              | 100   | 1,809  |
| Engineering, architecture                            | 3             | 13                        | (32)                            | (32)                        | 21              | 100   | 1,667  |
| Agriculture                                          | 4             | 8                         | 23                              | 31                          | 35              | 100   | 305    |
| Medical and health sciences                          | 9             | 16                        | 18                              | 27                          | (30)            | 100   | 1,322  |
| Other                                                | 8             | 15                        | 33                              | 24                          | 20              | 100   | 334    |
| Total                                                | 14            | 18                        | (27)                            | 24                          | 17              | 100   | 10,563 |



# **Public Vs Private Funding**

| Public                                             | Private                                           |  |  |  |
|----------------------------------------------------|---------------------------------------------------|--|--|--|
| Limited money                                      | Unlimited money                                   |  |  |  |
| Decision by your peers                             | Decision by investors                             |  |  |  |
| Basic ideas OK, but applied more successful        | Only applied ideas will be<br>funded by industry  |  |  |  |
| Results in publications, training, and more grants | Results in use by society<br>and more investment  |  |  |  |
| Limited funding for<br>regulatory efforts          | Funding always includes regulatory considerations |  |  |  |

# **Working With Industry**

David Jaffray developed cone beam CT at Beaumont Hospital Hospital in Michigan. This would not have been a good environment for Jaffray except for enlightened management and the presence of John Wong.



David Jaffray

### **Starting Startups**

- Stanford Linear Accelerator lab was one of the preeminent linac labs in the world.
- Stanford had large and exceptional engineering programs.
- Stanford capitalized on the linac with a partnership with Varian and later developed the CyberKnife.
- Stanford understands the value of entrepreneurship.



# **Steps for Industrial Engagement**

- Identify a important problem.
- Arrive at a technical solution to the problem.
- Protect your intellectual property.
- Ensure that there are customers for the solution.
  - Pitch your solution to a company or start your own company.

## **Mo-99 Made in Aging Reactors**



NRU Reactor, Chalk River, Canada – now shut down

HFR Petton Reactor, Holland – soon to be shut down







#### **Mo-99 Production with a** Sub-Critical Assembly ~\$300 M



#### An Irradiation Unit consists of:

D-T Neutron Driver Subcritical Assembly \* Concrete confinement structure (Irradiation Cell) Supporting systems (e.g. Target Solution Dump Tank, Cooling Systems, Neutron Flux Monitor)









with a company or create a company.

#### Conclusions

- You don't predict the future you make the future.
  If you consider yourself an applied scientist then maximize your impact by driving your ideas into practical use.
- Look for the gaps and operate at the edge.
  Funding from public and private sources is fundamentally different.
- Nothing is too big to take on with the private sector.
- Entrepreneurism may be the highest form of academic engagement with society.