Innovations in Ultrasound & Breast Cancer Imaging

Azra Alizad, MD
Department of Radiology
Mayo Clinic College of Medicine
2018 AAPM Annual meeting

Disclosure

Mayo Clinic and some investigators have potential financial interests related to the technologies referenced in this presentation.

• Research Areas: Ultrasound
 - Vibro-acoustography (VA)
 - Elastography techniques
 - High Resolution Microvasculature imaging and quantification
 - Deep Learning (Automatic segmentation and classification of breast masses)
Breast Imaging

- **X-ray mammography**: Low sensitivity
 - Limitations:
 - Pregnant women
 - Lactating women
 - Young women with dense breasts
 - High-risk women

- **Conventional Breast Ultrasound**: Low specificity

- **MRI**: High sensitivity
 - Limitations:
 - Low specificity
 - High cost
 - Less available

- **Need**: Low cost, non-invasive, high specificity imaging tool for breast cancer detection

Advantages of Ultrasound Imaging

Advantages:
- Non-ionizing
- Real-time
- Large imaging depth
- Cost-effective
- Portable and widely available

Ultrasound is the most widely used imaging modality in clinical practice

Ultrasound Technology Trends

Seeking new information
- Acoustic imaging
- Ultrasound elastography techniques
- Contrast-enhanced imaging
- Ultrafast Doppler microvasculature imaging
Vibro-acoustography (VA) in Breast Cancer Detection

Imaging and estimation of tissue stiffness
VA and ultrasound elastography techniques: palpation like information

VA: New Breast Imaging Methodology

- Tissue stiffness is closely related to pathology of tissue.

Goal: To develop a new high-resolution imaging method that is sensitive to tissue stiffness.

Approach: Use Vibro-acoustography (VA) for breast imaging
Principles of Vibro-acoustography

Concept: Vibro-acoustography uses radiation force of US to produce images at low frequencies

Main steps in vibro-acoustography:
1. Vibrate object by "radiation force" of ultrasound
2. Record the sound from object response
3. Image object by scanning
In Vivo Breast Applications of VA

Objective:
• Evaluate the Performance of VA in differentiation of breast masses

Description of Study Cohort:
• 60 patients with suspicious breast lesions
 • Age > 18 years

System Used:
Integrated mammography ultrasound system (Vivid 7 GE)

Combined Vibro-acoustography-Mammography System
Main Features of VA

VA image features
- Provides new information not available from sonography
- Sensitive to stiffness
- Speckle-free
- Sensitive to calcification
- High contrast images

Implications
- More diagnostic information

Examples of Breast VA

Breast Fibroadenoma
- 71 years old woman

Right breast
- Mammography: 2 cm, sharply marginated mass with coarse lobulation

Left breast
- Mammography: calcified mass

Alizad et. al., Breast Cancer Research, 2012
Examples of Breast VA

Infiltrating lobular carcinoma, GII

67 years old woman
Mammography: Spiculated mass
US: Hypoechoic mass with irregular border

Examples of Breast VA

Invasive ductal carcinoma G. II

64 years old woman
Mammography: Minimal architectural distortion, increased soft-tissue density
US: 5 × 7 mm hypoechoic lesion with posterior shadowing
VA: mass with higher contrast fine spiculations

Examples of Breast VA

Breast Fibroadenoma

42 year old woman with palpable abnormality
Mammography: dense but unremarkable
VA: Round mass with defined border and some lobulations

Diagnostic accuracy:
Sensitivity (95% CI), % 80
Specificity (95% CI), % 94
Breast VA: Concluding Remarks

- VA can be used as a breast cancer diagnostic tool as a complementary to conventional US.
- VA is sensitive to tissue stiffness, detect MCs, a sensitive tool for early diagnosis and in patients with dense breast where mammography fails.
- Future work is to improve handheld VA for a clinical utility.

High Resolution Microvasculature Imaging and Quantification

Angiogenesis

Understanding the Microvasculature differences in Malignant and Benign Masses
Angiogenesis:
Growth of New Blood Vessels

Normal
- First vessels in the developing embryo
- Vital process in growth/development
- Wound healing

Abnormal
- Tumor vessels lack protective mechanisms
- Lack functional perivascular cells
- Sometimes lack endothelial cells in vessel wall
- Transition of tumors from a benign to a malignant state.

Tumor Angiogenesis
- Toward and within tumor
- Starts in tumor as small as 2-4 mm

Role of Microvasculature in Breast Cancer
- Breast tumor growth and metastasis are dependent to tumor angiogenesis
- Extent of angiogenesis can be used as prognostic factor

Statistically significant correlation of microvessel density with tumor grade
Role of Microvasculature Morphology in Malignant/Benign masses

- MVD alone not always a good marker for benign and malignant masses
- Need: To quantify other morphological parameters
 - Vessel tortuosity
 - Benign: Straight and regular vessels
 - Malignant: tortuous and irregular vessels
 - Vessel diameter
 - Number of vessel segments
- Imaging and quantification microvascular architecture could be used for breast tumor differentiation

Method: Non-invasive Imaging of Microvessels

- Conventional US Doppler can only display large vessels
- Value of US Doppler in differentiation of breast masses is limited
- Need: Develop new non-invasive tools to provide quantitative information about microvessels of the breast lesion

Breast Microvasculature Imaging and Quantification

- Hypothesis: Microvasculature of breast masses changes with pathology
- Goal: Differentiation of breast masses based on microvasculature morphology analysis

Method:
- Ultrafast ultrasound imaging of micro-vessels
- Quantification of microvasculature architecture
- Use the quantified of morphological parameters of microvasculature for differentiation
Representative malignant cases

Method

Patents pending
SOAM = Sum (all angles) / Vessel length

Vessel Tortuosity Metrics

Sum of Angles Metric = SOAM

Distance metric (DM)

DM = Vessel Length/Distance

Fibroadenoma. Focal atypical ductal hyperplasia. Fibrocystic changes

Invasive/Infiltrating Ductal Carcinoma (IDC) Grade III

Morphological Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of vessel segments</td>
<td>30</td>
</tr>
<tr>
<td># of branch points</td>
<td>15</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>435</td>
</tr>
</tbody>
</table>

Morphological Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of vessel segments</td>
<td>91</td>
</tr>
<tr>
<td># of branch points</td>
<td>47</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>607</td>
</tr>
</tbody>
</table>
Fibroadenoma

Morphological Parameters

<table>
<thead>
<tr>
<th># of vessel segments</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td># of branch points</td>
<td>11</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>394</td>
</tr>
</tbody>
</table>

Invasive/Infiltrating Ductal Carcinoma (IDC) G-III

Morphological Parameters

<table>
<thead>
<tr>
<th># of vessel segments</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td># of branch points</td>
<td>102</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>474</td>
</tr>
</tbody>
</table>

Fibroadenomatoid nodule

Morphological Parameters

<table>
<thead>
<tr>
<th># of vessel segments</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># of branch points</td>
<td>6</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>463</td>
</tr>
</tbody>
</table>

Metastatic renal cell carcinoma

Morphological Parameters

<table>
<thead>
<tr>
<th># of vessel segments</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td># of branch points</td>
<td>40</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>303</td>
</tr>
</tbody>
</table>

Fibroadenoma

Pathology: Invasive ductal carcinoma, grade II.

Lesion Dilatation / Parameter

<table>
<thead>
<tr>
<th># of vessel segments</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td># of branch points</td>
<td>26</td>
</tr>
<tr>
<td>Mean(Diameter)</td>
<td>416</td>
</tr>
</tbody>
</table>
Identifying metastatic AXL

- Reactive lymph node negative for malignancy
- Invasive poorly differentiated carcinoma consistent with metastatic breast primary

Assessment of neoadjuvant therapy

<table>
<thead>
<tr>
<th>Before therapy</th>
<th># of segments ≤50</th>
<th>2 mons after therapy</th>
<th># of segments ≤10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Before therapy</th>
<th># of segments ≤50</th>
<th>2 mons after therapy</th>
<th># of segments ≤25</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results of microvessel Diameter

P = 0.001
Number of Vessel segments

![Graph showing number of vessel segments for benign and malignant lesions with a p-value of 0.006.]

Benign: 57
Malignant: 40

Differentiation of Breast Lesion Using Microvasculature Biomarker

Biomarker: Vessel Tortuosity - Distance Metric

p-value = 0.00015

Conclusion: Breast masses may be differentiated using microvasculature quantification

Future Direction: 3D Microvasculature Imaging

Articulated arm
Motor
Scanning direction
Ultrasound Probe
Flow phantom
3D View
3D vessel views
Summary

- Introducing a high resolution ultrasound imaging of microvasculature

- Novelty:
 - Significant clutter reduction: Visualized microvasculature structure with high resolution 300-200 μm
 - No contrast enhanced agents
 - Quantified morphology of microvasculature architecture
 - First validation on pre-biopsy breast patients
 - Will use 3D microvasculature imaging for better quantification
 - Prediction of ALN metastasis in breast cancer patients
 - Assessment of neoadjuvant therapy

Can extended to other organs involving soft tissues

Acknowledgements

The research projects supported by several grants from National Institute of Health and a Fund by The Komen for the Cure.

Funding Sources:
- R01CA195527
- R01CA148994
- R01CA168575
- R21CA121579
- R01CA127235
- BCTR0504550 (Komen for the Cure)

Collaborators:

- Mostafa Fatemi, PhD
- Robert Fazzio, MD, PhD
- Dana Whaley, MD
- M. Bayat, PhD
- V. Kumar, PhD
- B. Kim, PhD
- R. Nayak, PhD
- A. Gregory, PhD student
- J. Webb, MS
- S. Adabi, PhD
- P. Lee, PhD student
- N. Bulegato, Grad student
- M. Lattanzi, Grad student
- S. Bae, PhD student

Lab Members:
Thank you!
Acoustic Radiation Force Elastography Techniques

• Vibro-acoustography (Sound of tissue)
• Acoustic Radiation Force Impulse (ARFI) Imaging
• Shear Wave Elastography:
 ➢ Supersonic Imaging
 ➢ Virtual Touch IQ SWE
 ➢ CUSE
 ➢ Shear Wave Dispersion Ultrasound Elastography

Shear wave Elastography
Shear wave Elastography

- Elastography is a technique to measure the stiffness of tissues.

- **Tumor stiffening**
 - Collagen crosslinking
 - ECM stiffening
 - Increased focal adhesion

Elastography

- Elasticity imaging modalities
 - Magnetic Resonance Elastography (MRE)
 - Static Elastography
 - Acoustic radiation Force Impulse (ARFI)
 - Supersonic Imagine (SSI)
 - VTIQ
 - Comb-Push Ultrasound Shear Elastography (CUSE)

Each technique has certain limitations.

Shear Wave Elasticity Imaging (SWEI)

Elasticity ~ (Shear wave speed)^2
Breast Shear wave Elastography (CUSE)

Objectives
To investigate the feasibility and performance of a new ultrasound-based shear elastography, comb-push ultrasound shear elastography, to measure elasticity in breast masses.

Fund: Grant R01 CA148994(NIH)

Materials and Methods

Description of Study Cohort:
- 227 patients with suspicious breast lesions
 - Scheduled for biopsy
 - Age range from 18 years and older
- Exclusion criteria:
 - Women with breast implants
 - Women who had mastectomies
- Ultrasound scanner
 - Verasonics investigational ultrasound platform
 - GE Logiq E 9
Results: Review of Selected Cases

Invasive lobular carcinoma, G. II

66 years old, BIRAD 4;
10 x 7 x 8 mm hypoechoic mass with a hyperechoic rim and angular margins
SWE: high elasticity value $E_{\text{mean}}=145\text{kPa}$

Results: Review of Selected Cases

Mucinous carcinoma, G. I

79 years old with palpable abnormality in left breast
US: 12 x 9 mm oval circumscribed mass as shown
SWE: high elasticity value with $E_{\text{mean}}=132.7\text{kPa}$

Results: Review of Selected Cases

Invasive mammary carcinoma with mixed ductal and lobular features

72 years old, BI-RADS 4
13 x 13 mm irregular region with posterior shadowing
SWE: Elasticity value $E_{\text{mean}}=97.7\text{kPa}$
Results: Review of Selected Cases

Benign Fibroadenoma

45 years old, palpable abnormality
US: hypoechoic mass
SWE: Elasticity Value $E_{mean}=26.7kPa$

SWE–LE9 Breast Results

Pathology	Number	Mean (kPa)	Std. Dev. (kPa)	p-value
Benign (B) | 119 | 30.18 | 27.81 | <0.0001* |
Malignant (M) | 108 | 90.66 | 35.55 | |

SWE–LE9 Breast Results

ROC Analysis

- 227 patients
- Cutoff: 62kPa
- AUC: 91%
- Sensitivity: 84%
- Specificity: 90%
- PPV: 88%
- NPV: 86%
Conclusion

- Specificity: 90% and sensitivity: 84%
- Small malignant case tend to be softer (FN) (apparently or naturally)

- False positives: Benign breast features with High Elasticity value
 - diabetic mastopathy, post operative scar, sclerosis and presence of calcification

- Potential clinical utility
 - CUSE as Quantitative and diagnostic tool complementary to B-mode ultrasound for differentiating malignant and benign breast lesions