

Learning Objectives

- Review of available dosimetric indications
- Real-time skin dose maps
- Managing radiation dose during a procedure
- $\succ\,$ Managing radiation dose after a procedure

Canon

DoseRite

The Past | FLUOROSCOPY TIME

A Look at the Data | NCRP REPORT 168*

"Because fluoroscopy time is such a poor indicator of radiation dose, its use is generally discouraged in favor of alternative dose measures."	
An order of magnitude variability observed across most fluoroscopy times!	
B) 1,700 Coronary-Artery Procedures AK = 0.53 + 0.12 x FT; R ² = 0.68	
A) 2,100 Non-Cardaic AK = 0.41 + 0.037 x FT; R ² = 0.50	

The Present | AIR KERMA (...AND DAP)

Dose Metrics | AIR KERMA AND DAP

What's Missing?

Dose Metrics | MORE RECENT ADVANCEMENTS

- IEC:2010 recommends a visual warning when RAK exceeds a (configurable) threshold expected to produce a skin injury
- Multiple Implementations of Air Kerma(+) "Maps"

> IEC:2018 recommends a dose map

Canon

DoseRite

Transition Towards Meaningful Dose Information

DTS | VALIDATION

Canon

DoseRite

DTS | VALIDATION – EXAMPLE RESULTS*

DTS | ON SITE CALIBRATION

DTS | PATIENT MODELS AND POSITIONING

Calloll *Skin dose to arms is of secondary value due to smaller body part thickness and variability in position on patient support.

DTS | BIPLANE CONFIGURATIONS

Canon

DoseRite

DTS | BODY VERSUS HEAD

Canon

DoseRite

DTS | REPORTING

- Local Storage of 2D and 3D Maps
 Export to: USB; Windows Networked Drive; External Server via FTP

Canon

DoseRite

DTS | MULTIPLE PROCEDURES

Canon *Conceptual Illustration. Not available as a product. DoseRite

Real-Time Dose Monitoring | STAFF

Clinical Dose Optimization

Clinical Dose Optimization

otal Dote

Canon

StPS

Dose Rate

A CASE REPORT

- ➤ 46 Year Old Male
- FGI: Cerebral angio with transvenous coil and glue embolization
- > Procedure Time: 150 minutes
- > Exposure Time: 67 minutes
- > Peak Skin Dose: 2.9 Gy
- Two weeks: nonscarring alopecia
- Four months: complete hair regrowth

Cannon Ounsakul V et al, "Radiation-Induced Alopecia after Endovase Dermatological Medicine, Article ID 8202469 (2016)

Dose Management | DURING A PROCEDURE

- > 6 months pre / post DTS display in exam room
- > 16 operators free to choose all imaging parameters
- > 1,077 consecutive procedures

Cannon Wilson SM et al, "Real-time colour pictorial radiation monitoring during coronary angiography: effect on patient peak skin dose and total dose during coronary angiography," EuroIntervention, 12, e939-e947 (2016)

Next Generation Dose Reduction Technologies

27

Dose Management | DURING A PROCEDURE

	Data Source	Procedure Description		Total Cases	> 1 Gy		> 2 Gy		> 3 Gy	
TT 1->	Data Source	Procedure De	scription	Total Cases	n	%	n	%	n	%
		Neuroembolizatio	n-head (all)	356	286	80%	136	48%	60	17%
	RAD-IR	Neuroembolizatio	n-spine (all)	18	17	94%	16	89%	10	56%
	RAD-IR	Stroke then	ару	5	3	60%	0	0%	0	0%
Rucro Time: 29 min		Caroticl St	ent	17	3	18%	1	6%	0	0%
Air Kerma: 2,980 mGy Peak: Skin Dose: 1,150 mGy	RAD-IR	All Related Pro	cedures	396	309	78%	153	39%	70	18%
17511-1	GVI	All Related Pro	cedures	348	45	13%	9	2.6%	2	0.69
	Table 4. Comparison of F	SD with RAD-IR study.	State of	Practice: 1	in 5	Excee	d Thr	eshold	d Dos	e
L L	rea of overlap a	voided	Study Po	opulation: <1 i	n 100	Excee	d Thr	esholo	d Dos	e

Dose Management | POST PROCEDURE

- Compare to state-of-practice data.
- DICOM RDSR is most effective for monitoring and managing clinical radiation dose levels post procedure.
- > Monitor to understand actual results with clinical use.

Canon

DoseRite

Dose Management | POST PROCEDURE

Dose Management | POST PROCEDURE

Summary | KEY LEARNING POINTS

- ➢ Fluoro Time < Air Kerma < Peak Skin Dose</p>
- Skin dose estimates need to include backscatter, patient support attenuation/scatter, field size, beam angulation, etc.
- Real-time skin dose maps empower the operator to better manage patient dose
- DICOM RDSR is an effective tool for monitoring and managing clinical radiation dose levels

е	at	10	11

DoseRite

For over 100 years, the Canon Medical systems. Made for Life 'philosophy prevails as our ongoing commitment to humanky. Generations of inherited passion creates a legacy or medical innovation and service that continues to evolve as we do. By engaging the brilliant minds of many, we continue to set the benchmark because we believe quality of the should be a given, not the exception.

Canon Medical Systems USA, INC.