Learning Objectives

- Review of available dosimetric indications
- Real-time skin dose maps
- Managing radiation dose during a procedure
- Managing radiation dose after a procedure

The Past | FLUOROSCOPY TIME

<table>
<thead>
<tr>
<th>Inadequate Estimation of Radiation Exposure</th>
<th>30 Minutes</th>
<th>15 Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Weight: 70 kg</td>
<td>2x</td>
<td>Patient Weight: 100 kg</td>
</tr>
<tr>
<td>Frame Rate: 7.5 fps</td>
<td>10x</td>
<td>Frame Rate: 15 fps</td>
</tr>
<tr>
<td>Cine Frames: 50</td>
<td>2x</td>
<td>Cine Frames: 200</td>
</tr>
<tr>
<td>Cumulative Air Kerma (mGy): 250</td>
<td>4x</td>
<td>Cumulative Air Kerma (mGy): 3750</td>
</tr>
<tr>
<td></td>
<td>15x</td>
<td></td>
</tr>
</tbody>
</table>
A Look at the Data | NCRP REPORT 168*

(A) 2,100 Non-Cardiac
AK = 0.41 + 0.037 x FT; R² = 0.50

(B) 1,700 Coronary-Artery Procedures
AK = 0.53 + 0.12 x FT; R² = 0.68

Because fluoroscopy time is such a poor indicator of radiation dose, its use is generally discouraged... in favor of alternative dose measures.

An order of magnitude variability observed across most fluoroscopy times!

The Present | AIR KERMA (...AND DAP)

Better Estimation of Radiation Exposure

<table>
<thead>
<tr>
<th>30 Minutes</th>
<th>15 Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Weight: 70 kg</td>
<td>Patient Weight: 100 kg</td>
</tr>
<tr>
<td>Frame Rate: 7.5 fps</td>
<td>Frame Rate: 15 fps</td>
</tr>
<tr>
<td>Cine Frames: 50</td>
<td>Cine Frames: 200</td>
</tr>
<tr>
<td>Cumulative Air Kerma (mGy): 250</td>
<td>Cumulative Air Kerma (mGy): 3750</td>
</tr>
</tbody>
</table>

Dose Metrics | AIR KERMA AND DAP

- Detector Exposure – R (Drives AERC)
- Organ Dose / Effective Dose – mSv (Patient Dose)
- Peak Skin Dose (PSD) – mGy (Patient Dose)
- Air Kerma at Reference Point* - mGy (Machine Output)
- Dose Area Product (DAP) – Gy cm² (Machine Output)

Patient Entrance Reference Point* = 15 cm from isocenter towards focus (IEC Standard)
Inverse Square Law: 60 cm vs 65 cm = 20%

Detector
X-ray Tube
Detector Exposure Reference Point* = 15 cm from isocenter towards focus (IEC Standard)
Inverse Square Law: 60 cm vs 65 cm = 20%
What's Missing?

- No Source-to-Skin Distance Corrections
- No Spatial Information (Dose Summed as if it occurred at a Single Point in Space, No Examiner Adjustment Included)
- Dose to Air, Not Dose to Tissue (No Patient Support Attenuation/Scatter, Tissue Absorption Factor, Backscatter)
- Individual Variability Reduced to a Factor of ~2x
- No Source Information

Dose Metrics | MORE RECENT ADVANCEMENTS

- IEC:2010 recommends a visual warning when RAK exceeds a (configurable) threshold expected to produce a skin injury
- Multiple Implementations of Air Kerma(+) "Maps"

- IEC:2018 recommends a dose map

Transition Towards Meaningful Dose Information

- Reference Air Kerma (Dose To Air at Reference Location)
- Real-Time Patient Dose Tracking System (DTS) (Estimated Skin Dose on Patient Graphic)
DTS | VALIDATION

--

DTS | VALIDATION – EXAMPLE RESULTS*

*VK Rana et al, “A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system,” Med Phys 43(9), 5131-5144 (2016)

*Bednarek et al, “Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopy procedures” SPIE 796127-1 (2011)

DTS | ON SITE CALIBRATION

➢ 5 Beam Filters
➢ 50 to 120 kV
➢ Fluoroscopy and Radiographic Modes
➢ LUTs Used for Rest (FOV, Head v Body, etc.)

*Typical Accuracy ± 20% With Careful Matching of Patient Graphic with Actual Patient (Geometry ± 5%)

DTS | PATIENT MODELS AND POSITIONING

*Skin dose to arms is of secondary value due to smaller body part thickness and variability in position on patient support.

DTS | BIPLANE CONFIGURATIONS
DTS | BODY VERSUS HEAD

Body Backscatter Factor

Head Backscatter Factor (0.80 – 0.85)

DTS | REAL-TIME

Exam Room Display
DTS | REPORTING

- Local Storage of 2D and 3D Maps
- Export to: USB; Windows Networked Drive; External Server via FTP

DTS | MULTIPLE PROCEDURES

Real-Time Dose Monitoring | STAFF

Clinical Dose Optimization

[Diagram showing dose rate and clinical dose optimization]

Clinical Dose Optimization

[Another diagram showing dose rate and different settings]

Canon

Debraite
A CASE REPORT

➢ 46 Year Old Male
➢ FGI: Cerebral angio with transvenous coil and glue embolization
➢ Procedure Time: 150 minutes
➢ Exposure Time: 67 minutes
➢ Peak Skin Dose: 2.9 Gy
➢ Two weeks: nonscarring alopecia
➢ Four months: complete hair regrowth

Dose Management | DURING A PROCEDURE

➢ 6 months pre / post DTS display in exam room
➢ 16 operators free to choose all imaging parameters
➢ 1,077 consecutive procedures

Next Generation Dose Reduction Technologies
Dose Management | DURING A PROCEDURE

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Procedure Descriptions</th>
<th>Total Cases</th>
<th>> 1 Gy</th>
<th>> 2 Gy</th>
<th>> 3 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoro</td>
<td>New obliteration closure</td>
<td>146</td>
<td>16</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Fluoro</td>
<td>New obliteration repair</td>
<td>65</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Sclerotherapy</td>
<td>Stent</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Sclerotherapy</td>
<td>Compression</td>
<td>47</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

All Sclerotherapy Procedures: 140 cases, 106 > 1 Gy, 58 > 2 Gy, 24 > 3 Gy

Table 1: Comparison of PTVs with Fluoro

Area of overlap avoided

State of Practice: 1 in 5 exceed threshold dose
Study Population: <1 in 100 exceed threshold dose

Dose Management | POST PROCEDURE

- Compare to state-of-practice data
- DICOM RDSR is most effective for monitoring and managing clinical radiation dose levels post procedure.
- Monitor to understand actual results with clinical use.

Dose Management | POST PROCEDURE

- MONTH 1
- MONTH 2
- MONTH 3
- MONTH 6

Dose Management | POST PROCEDURE

- MONTH 6

Dose Management | POST PROCEDURE

- MONTH 6
Dose Management | POST PROCEDURE

Summary | KEY LEARNING POINTS

➢ Fluoro Time < Air Kerma < Peak Skin Dose
➢ Skin dose estimates need to include backscatter, patient support attenuation/scatter, field size, beam angulation, etc.
➢ Real-time skin dose maps empower the operator to better manage patient dose
➢ DICOM RDSR is an effective tool for monitoring and managing clinical radiation dose levels

Made For life

For over 100 years, the Canon Medical Systems Made for Life philosophy prevails as our ongoing commitment to humanity. Generations of trusted products, services, ingenuity of medical innovation and service that continue to evolve as we do. By engaging the brilliant minds of today, we continue to set the benchmark because we believe quality of life should be a given, not the exception.

Canon Medical Systems USA, INC.