Diffusion Imaging in the Brain

Nathan Yanasak, PhD Dept. of Radiology & Imaging Augusta University

Isotropic Diffusion (1)

$$\frac{\partial n(\vec{r},t)}{\partial t} = D\nabla^2 n(\vec{r},t)$$

Are we really looking at diffusion, clinically? Biological "Diffusion" \approx self-diffusion of water (1) + geometric restrictions (2) + "random, slow flow" (3)

$$\frac{\partial n(\vec{r},t)}{\partial t} = \vec{\nabla} \cdot (D(\vec{r})\vec{\nabla}n(\vec{r},t)$$

Inhomogeneous material, or anisotropic diffusion.

1D solution

 $\frac{-x^2}{4Dt}$ n(x,t) $(2Dt)^{1/2}$

Are we really looking at diffusion, clinically?

- Biological "Diffusion" \approx self-diffusion of water (1) + geometric restrictions (2) + "random, slow flow" (3)

Beaulieu, NMR in Biomed; 2002

AUGUSTA UNIVERSITY

For the most part, non-gaussian behavior affects both mean diffusivity and diffusive anisotropy.

Contributing factors:

cell membrane permeability/exchange rate intra/extra-cellular diffusion myelin* inner cell structures necrosis

Also: relaxation in different compartments \rightarrow contrast vs. composition

.

.

From LiBihan, 2014, EMBO Molecular Medicine

Gaussian vs. Non-Gaussian Demo

1) Non-gaussian qualities depend on diffusion time.

AUGUSTA UNIVERSITY

2) Multiple compartments + permeability = reality?

Gaussian vs. Non-Gaussian Demo

1) Non-gaussian qualities depend on diffusion time.

AUGUSTA UNIVERSITY

2) Multiple compartments + permeability = reality?

AUGUSTA UNIVERSITY

 $D = 2.2 \times 10^{-3} \text{ mm}^2 \text{ / second}$ (free water)

Time between pulses: t = 10-20 msec (maybe +)

 \rightarrow I ~ 5-15 μ m

(not much exchange between compartments, but much contact with membranes).

> Typical MRI scale lengths: $< 30 \mu m$.

t~ 1 msec: pure diffusivity t~1 sec: compartmental mixing t~10-100 msec: geometric constraints

So, what's normal and what's not? Qualitative: "What does diffusion in healthy tissue look like?" Fast/slow Characteristics: anisotropy, non-gaussian, variation with b. "How does diffusion change with particular pathology?" Expectations from understanding of tissue and models/theory. Comparison with contralateral/healthy regions. "How does that change with disease progression?"

Quantitative: "What values of diffusion metrics are associated with pathology?" "What values match with viable tissue before intervention?" "Grading of pathology with quantifyable values?"

Anatomy of an Ischemic Stroke

Normal cells

Ischemia disrupts sodium pump—influx of water causes cell swelling (decreased "diffusion", restricted & hindered diffusion (

From Radaideh, et al. Neurographics, 2002₁

Cytotoxic edema \rightarrow vasogenic (cell death) (increased diffusion)

2002.

As stroke progresses, inter- and extra-cellular water diffusion properties (and compartmental fraction) changes \rightarrow DWI changes

Gonzalez, JMRI, 2012

Т2

36 hr

4 d

Decrease diffusion at infarction s

ADC

$<3 \times DW > "/ b \rightarrow ADC$

DWI in a Stroke Protocol

MR images (6000/210/1) in a **67-year-old woman with left** hand weakness, left facial droop, and slurred speech.

Clinical standard today: this is where diffusion imaging for stroke stops.

> Maarten G. Lansberg et al. AJNR Am J **Neuroradiol** 2001;22:637-644

T2 shine through

Diffusion Anisotropy Review Each application of a diffusion gradient, we measure diffusion in ONE direction. Can apply multiple gradients to examine anisotropy.

In structured tissues, restrictions may depend on direction of diffusion. E.g., white matter diffusion is highly anisotropy.

Changes in anisotropy \rightarrow structural breakdown (or plasticity?)

From six or more measurements (+b0), determine tensor in each image voxel:

 \rightarrow three eigenvalues of diffusion magnitude (e-values: λ_i) \rightarrow three eigenvectors of diffusion direction (e-vectors: ε_1)

Also, fractional anisotropy (FA).

DTI: examine the amount of diffusion along various axes. DTI Review

Nominally distribute gradient directions over sphere

$$FA = \sqrt{\frac{3\left(\left(\lambda_{1} - \lambda_{2}\right)^{2} + \left(\lambda_{1} - \lambda_{3}\right)^{2} + \left(\lambda_{2} - \lambda_{2}^{2}\right)^{2}\right)}{2\left(\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}\right)}}$$

DTI Review DTI: examine the amount of diffusion along various axes.

From six or more measurements (+b0), determine tensor in each image voxe:

 \rightarrow three eigenvalues of diffusion magnitude (e-values: λ_i) \rightarrow three eigenvectors of diffusion direction (e-vectors: ε_1)

Also, fractional anisotropy (FA).

Other WM metrics: axial, radial diffusivity

Nominally distribute gradient directions over sphere

DTI Review

b0 Image (T2-weighted)

information

From Hagmann, et al. Radiographics, 2006

FA image (map + color-code)

DTI gives you diffusion magnitude information, anisotropy, and directional

DTI Review

DTI gives you diffusion magnitude information, anisotropy, and directional information

Jellison, et al., AJNR, 2004

AUGUSTA UNIVERSITY

Measure DTI metrics for each hemisphere (posterior limb of IC).

Ratios of metrics (ips. to contr.) at baseline best correlation for *future* motor improvement.

DTI in a Stroke Protocol

What is the motor function outcome in stroke rehabilitation?

Monitor DTI metrics longitudinally in the internal capsule (median & 20-month post)

Song et al. Fron. Human Neurosci. 2015

Measure DTI metrics for each hemisphere (posterior limb of IC).

Ratios of metrics (ips. to contr.) at baseline best correlation for *future* motor improvement.

DTI in a Stroke Protocol

What is the motor function outcome in stroke rehabilitation?

Monitor DTI metrics longitudinally in the internal capsule (median & 20-month post)

Song et al. Fron. Human Neurosci. 2015

DKI Review DKI: quantifying the non-gaussian components of diffusion. Normal cells \rightarrow How much hindrance is going on?

Displacement

Acute stroke

DKI in a Stroke Protocol

AUGUSTA UNIVERSITY

Probability

Displacement

Final lesion size post-intervention

Dark ADC \rightarrow lower diffusion

Bright mean kurtosis \rightarrow more hindered diffusion.

Yin et al. Radiology 2018

IVIM Review

AUGUSTA UNIVERSITY

Slow perfusion in random directions ~ fast diffusion.

IVIM: quantifying the fraction of microcirculation.

 \rightarrow How is perfusion affected throughout stroke volume?

lima & LeBihan. Radiology, 2016

IVIM and Acute Stroke

0.2 0.18 0.16 0.14 0.12 0.08 0.06

Microperfusion in stroke core

Federau, et al. Neuroradiology, 2014

IVIM and Acute Stroke

Microperfusion in stroke core

Federau, et al. Neuroradiology, 2014

Ahem ... this is a patient that we're dealing with. Scanning speed is not irrelevant. pMRI is critical! E.g., without pMRI: DWI (3 directions + 1 b0 image (TR~ 16 sec, 30 slices)) scantime: ~ 1 min DTI (32 directions, 1 b-value + 1 b0) scantime: \sim 8 min Meh... DKI (32 directions, 2 b-values + 1 b0) scantime: \sim 16 min multi-exponential (DWI scan (3 dir), 16 b-values, NEX increases with b-value to increase SNR \rightarrow 84 scans) scantime: ~ 21 min High Angular Resolution Diffusion Imaging scantime: ~ a long

Cancer

High cellularity

Normal Parenchyma

Secondary tumor

Necrosis

Tumors often have a rich, heterogenerous structure, changing over time.

Basics of Visual Diagnosis Principle #0: Very high ADC = cyst, vasogenic edemic region.

Principle #1: Cellularity correlates inversely with ADC (healthy and pathological).

Principle #2: In structured tissues, infiltration can affect FA, eigenvectors, etc

Basics of Visual Diagnosis

Guo, et al. JMRI, 2002 (cancerous breast lesions)

DWI and Cancer – tumor progression Fast diffusion in core (cellular breakdown) Apparently healthy WM

General Edema

Somewhat fast diffusion in periphery

Diffusion behavior can be rich in tumor region.

Hindered diffusion in patches (hypercellularity).

Applications of Imaging to Cancer Diagnosis/Classification Tool – heterogeneity vs. homogeneity, ADC value Treatment Planning Tool – ischemia, necrotic core Treatment Monitoring – changes in ADC value during treatment Potential use as a screening tool** – increased cellularity in DWIs (whole body)

Clinically, ADC map offers the most straightforward DW-based tool to interpret (but, less specific about precise tissue changes).

DTI (FA map) to Sort Out Infiltration

Bilateral inspection of brain tracts can help to reveal the pathology of tumor and/or integrity of WM in case of surgery.

A: T2W B: post-contrast T1W C: FA map **D:** Tractogram

Ganglioglioma, with tracts preserved but shifted in position.

Preservation in color (direction) but reduction in FA indicates edema.

A: T2W B: post-contrast T1W C: FA map D: color-coded FA

FA reduced and direction distorted, implying disruption (infiltrating astrocytoma).

A: T2W B: post-contrast T1W C: FA map D: color-coded FA

A: T2W B: post-contrast T1W C: FA map, normal patient D: FA map, patient

Tractography

From CAMINO image processing manual

http://camino.cs.ucl.ac.uk/index.php?n=Tutorials.DTI

Principle e-vector in DTI (or ODF for HARDI) generally points along neural fiber axial

Tractography

From CAMINO image processing manual http://camino.cs.ucl.ac.uk/index.php?n=Tutorials.DTI

Jellison, et al. 2004, AJNR

Principle e-vector in DTI (or ODF for HARDI) generally points along neural fiber axial direction.

Various software routines to link directions together and generate "tracts".

Tracts ≠ neural fibers (but correlation).

Tractography

From CAMINO image processing manual http://camino.cs.ucl.ac.uk/index.php?n=Tutorials.DTI

Problems with DTI tractography – crossing fibers in voxel lead to low FA (Assaf & Pasternak, 2008, J Mol Neurosci, 2008)

Principle e-vector in DTI (or ODF for HARDI) generally points along neural fiber axial direction.

Various software routines to link directions together and generate "tracts".

DTI tractography to examine infiltration

- DTI tractography combined with tumor segmentation for pre-surgical planning.
- Tracts were seeded using ROIs running through wrist (green) and shoulder (magenta) motor strip regions near cortex.
- (Mukherjee, et al., 2008, AJNR)

Brain Imaging – classification (DTI)

Normal appearing white matter, and non-enhancing lesion tissues (DTI). Khayal, et al., NMR Biomed 2009

WM – healthy white matter OD – oligodendroglioma OA –oligoastrocytoma NEL – non-enhancing

AUGUSTA UNIVERSITY

Tractography & Huntington's Disease

Many more applications... possibly...

DWI, DTI, and MS

Congenital Malformations

Conclusions

• DW-MRI is a powerful tool for looking at changes in tissue microstructure.

 ADC maps provide good qualitative contrast for distinguishing healthy tissue from non-enhancing pathology (cellularity), but less specific about structure.

• More complicated DW-based techniques may provide substantially more information, but more benchmarking/clinical testing required.

Nathan Yanasak Augusta University nyanasak@augusta.edu

Questions?

Other Uses (time permitting)

Multi-exponential grading of gliomas

Use of microperfusion to distinguish high and low grade gliomas.

Federau, et al. AJNR 2014

Diffusion and treatment response

Monitoring change in ADC during treatment.

Schmainda, CNS Oncol, 2012

Monitoring Adverse Effects in RT

Nagesh, et al., examined normalappearing white matter during radiation therapy (J. Rad. Onc., 2008).

Mostly Glioblastoma multiforme patients...

30 20 20> and FA 0 10 <D> and FA 0 -10 -20 -30

