

98)

 $\rm 2D$ and $\rm 3D$ image guidance for interventional procedures

kV, mA & filtration matter, but so do advanced applications

Aya REBET Clinical Research Engineer		AAPM 2018
Confident	tial. Not to be copied, distributed, or reproduced without prior app	roval.

Disclosures

GE Healthcare employee

83

Scope

Dose reduction can be achieved through

- image acquisition techniques (kV, mA, filtration)

- image processing (denoising, edge enhancement, ..)
 - 2D & 3D advanced planning & guidance

Each procedure has specific needs..

Each step of each procedure deserves optimal imaging

2D advanced applications examples

Advanced 2D roadmap

83

)

GE Propr

8

Stent visualization IFGF- Stent Viz & Stent Vessel Viz ©, Philips: Stent Boost ©, Siemens: Clear Stent ©)

83

Bolus Chasing

 Clinical objective: assess lower limbs vessels patency with only one contrast injection

 Application: follow a single contrast injection and paste images together to visualize the entire vessels

Vascular flow imaging

Stenting assessment using AngioViz

83

3D advanced applications

CBCT ID ©, Philips: XperCT ©, Siemens: DynaCT ©)

CBCT proven clinical value vs DSA

- Iwasawa et al. 2009 "identifying Feeding Arteries During TACE of Hepatic Tumors: Comparison of C-Arm CT and Digital Subtraction Anagorgaph"
 Examined S5 possible Heading arteries in 33 patients [..]. The sensitivity, specificity, and accuracy of CBCT [96: 59%, 97.0%, and 96.3%, respectively) are significantly higher than those for DSA (77.2%, 73.0%, and 75.4%). CBCT is superior to DSA for identifying tumor-teeding arteries during supersidence TACE for IRC.
- Moc Damy Wang et Al. 2016 "Benign Prostatic Hyperplasia: Cane-Beam CT in Conjunction with DSA for identifying Prostatic Arterial Anatomy"
 The numbers of prostatic artery origins and anastomoses that could be identified were significantly higher with CBCT (94.7% and 97.0%) than with DSA (74.5% and 58.2%, P < 05). Cone-beam CT provided essential information that was not available with DSA in 90 of 148 (60.8%) patients.
- im 9 of 14 speckan paperns: 1 on 8. Hinrich 41 2015 "Comparison of C-arm Computed Tomography and Digital Subtraction Angiography in Patients with Chronic Thrambenbeic Pulmoary Hypertension" Purpose: assess the pulmoary arteries adaptosic performance of CBCT compared to DSA in patients suffering from dronic thromboenholic pulmoary hypertension. Conclusion: "CBCT comhers 31 Oarsacciscular Hanging with an outstanding patient and resolution that allows evaluation of the pulmonary arteries from the main artery to a sub-segmental level, revealing findings missed on DSA.

CBCT provides clinical information DSA cannot provide One CBCT can avoid several DSAs

83

CBCT: It's not only about the dose ...

- Remove objects that may cause artifacts: cables,	e.g. for a common hep				
- Center the anatomy	Spin starts after	Zs	45		
 Adapt the reconstruction filter 			ii. eebr		

Patient breathing instructions
 Internal metallic structures

e.g. for a common hepatic artery acquisition:

14

Injection rate: from 0.5 cc/s to 5 cc/s
 Inject during full spin for vessels visualization
 Optimized delay depends on catheter position

16

CBCT Respiratory motion compensation (GE only: Motion Freeze @)

Avoids retakes, saves dose

83

Metallic Artifacts Reduction (GE: MAR ©, P

Extends range of CBCT-visible anatomies

83

Clinical example Hepatic radioembolization

Main objective: understand the anatomy, tumor(s) location, best injection point, risk for extrahepatic perfusion

Injection : Segment 4

Main objectives: Understand tumor supply (will I treat the expected lesions ? can I be more selective?), extra-hepatic perfusion

18

19

Clinical example Renal aneurysm

Intraprocedural 3D planning & assessment

83

83

Clinical example Neuro advanced 3D planning & assessment

3D advanced applications

3D Roadmap techniques

1 (0)

6

Accuracy matters

Accuracy needs depends on clinical application - Liver procedures - Neuro-radiology - Cardiac

Safety feature to show live misregistration (patient motion, ...) & provide table side capability to manually adjust the registration when needed

83

3D advanced applications

CT/MR guidance for complex catheterizations (GE: Vessel ASSIST @, Philips, Siemens)

Arterial tree automatic segmentation Fluoro / C from pre-operative CT using two vie Bones and/or cor

n gantry motion, dynamic adjustment
GE Proprietary 25

83

(GE: Liver ASSIST @)

Automatic liver, portal and hepatic system segmentation from pre-operative CT

Step 2: Fluoro / CT registration using two views only No spin Bones and/or CO2 injection

Step 3: 3D live guidance under fluoro, automatic registration with table and gantry motion, dynamic adjustment

26

27

83

Use of fusion with CBCT for complex case

Liver transarterial embolization

- TACE procedure principle: Embolic agent to suppress arterial blood supply Drug to kill the tumor cells
- Patients with primary liver cancer often have a poor liver function \rightarrow important to be super selective during the drug delivery
- 2 important to de super senective ou ing une ung denively CBCT offers Superior 3D visualization of the vasculature with a single injection Better tumor feeders sensitivity & visibility of extra-hepatic perfusion Reduced need for DSA runs Assessment of post-embolization contrast retention
- But image analysis takes time...

Need for an easy to use & automated tool, to improve transcatheter liver interventions and gain time

Liver transarterial embolization

(GE: Liver ASSIST ©, Siemens: Embo Guidance ©, Philips: EmboGuide ©)

30

Liver embolization guidance - clinical value

Iwazawa et Al. – 2013 « Comparison of the Number of Image Acquisitions and Procedural Time Required for Transarterial Chemoembolization of Hepatocellular Carcinama with and without Tumor-Feeder Detection Software » Use of CBCT with automated feeder-vessel detection software TACE of HCC helped to reduce the number of total image cquisitions and the overall procedural time while maintaining comparable treatment efficacy, as compared to that of TACE without software assistance"

	Number of image acquisition					
houging	Tamer multiplicity	TACE with software (a = 50)	TACE without software (st = \$40	P		
	Single (n = 62)	374 18(2-4)	6.3 6 1.7 (3-40)	<0.00		
Angingraphy	Multiple (n = 73)	5.2 1.9 (2-80)	7.8 x 2.4 (4-14)	0.008		
	Overall	4.6 \$ 1.7 (2-10)	6.6 1 2.1 (3-14)	<0.00		
	Single (n = 62)		3.4 ± 1.5 (2-4)	0.884		
Cam CT	Multiple (a = 73)	44414(2-7)	48 + 12 (2-7)	0.25		
	Overall	41 ± 1.4 (2-7)	3.6 x 1.4 (2-40	6.228		
	Single (n = 62)	7.1 x 1.8 (5-12)		0.012		
Test	Multiple (n = 75)	9.6 x 2.7 (5-36)	11.0 x 3.2 (ii-20)	0.085		
	Osesal	8.7 x 2.7 (5-36)	10.4 x 3.2 (5-20)	0.004		
		Providend time (r	nia)			
Janes and plotty		tils sellware = 50	TACE without software (a = 84)	P		
Single (ar = 65)	66 1 2	2 (44-170)	149 x 29 (38-167)	0.00		
Multiple (w = 75)	112 x	15 (30-270)	123 x 32 (67-226)	4.22		
	103-1 33 (44-170)		116 31 (58-228)	0.02		

38

ed (149.7 G SIST was the

g Vessel Detection Software: Impact on	
r Carcinoma Response »	Automatic tur - Finds addition
e of CR was observed for HAE using Liver ASSIST us 2D imaging alone (68.4% vs. 36% p = 0.03). area product was lower when Liver ASSIST was	 Increases co Saves proce
y.cm ² vs. 227.8 Gy.cm ² p = 0.05). Use of liver e only factor predictive of CR (p = 0.04) on	Overlay of the - Helps reduc

lis et Al. – 2018

Vessel Detection Software: Impact on	Data are represed as me
Carcinoma Response »	Automatic tu - Finds addit
of CR was observed for HAE using Liver ASSIST is 2D imaging alone (68.4% vs. 36% p = 0.03). rea product was lower when Liver ASSIST was	 Increases of Saves proce
cm ² vs. 227.8 Gy.cm ² p = 0.05). Use of liver only factor predictive of CR (p = 0.04) on	Overlay of th

Multiple (ar = 73)	112 x 35 (NI-UN)	123 x 32 (87-228)	0.225
Overall	103 + 33 (44-078)	116 31 (58-228)	0.023
Date are represed as more a sta-	died deviation (mage).		
Automatic tumor	feeders detection in 3D		
Finals additions	feedericity DCA imme	ving treatment response	
		wing treatment response	
 Increases confid 	dence during procedure		
 Saves procedure 	e planning time		
Overlaw of the 2D	embolization plan on to	n of fluoro	
		quired, i.e. dose & contrast	
 Helps determin 	e the optimal view, easin	g catheterization	
			31

EVAR guidance (GE: EVAR ASSIST Ø)

ne extraction Ostium marking Marking of planes of interest

S. Haulon, et al. Endovascular Today – "Using image fusion during EVAR. Experience from a high-volume aortic center shows a reduction in radiation exposure when image fusion is used."

32

83

INF INVENTION		83-0 (80-0-48 N	12.2 (0.2-29.5)	4.65					
	FEW.	72.9 (52-309.2)	43.7 (04.7-53.5)	5.05					
		198.0 (205.8-222.4)	47.4 (87.2-188.3)	4.65		Number of	Median DAP-30y cm ²	Median CAK (mDa)	Median contrast medi
	180	33.0 (11.4-38.0)	24.7 (22.0-28.7)	.63		actient enrolled			used is of indirely
					Centre 1	38	20.2 (7.1-98.9)	174 (67-935)	33.8 (21-99)
Contrast medium volume [HL]	14	80 805-3080	59 00-254	.34	Caritra 2	27	10.3 (0.2-34.7)	104 (80-395)	30.2 (4/3-16-8)
	12.76	1.88 (200-1903	105 (73-114)		Centre 5	15	16.0 (13.9-22.5)	83 (71-139)	31.5 (8.8-13.3)
	88	235 (158-278)	130 (300-170)	×45	Cantra 4	35	28.1 (13.6-45.9)	132 (51.5-303.5)	34.4 (00.5 17.0)
	540	100 (38-180)	80 (92-200)	.07	Centre S	12	14.2 (11.0-24.8)	83 (62-117.1)	25 (9.6-18.8)
					Centre 6	1	26.5	98	22.4
Intervention time (min)		83 (75-120)	92.5 (75-128)						
	FEW.	150 (205-180)	150 (150-160)	.33					
		233 (258-290)	205 (399-240)	87					prietary 33
		117 (60-138)	80 80-105)	.32					

3D advanced applications

83

Vertebroplasty

(GE: Needle ASSIST (D, Philips: Xpe nens: iGuide (0)

35

Procedure planning: - Cone Beam CT acquisition - On multi-planar image define The target point The entry point

Procedure guidance: Export the results to the fusion software

Needle guidance clinical value

Tselikas et Al. – CVIR 2015 "Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance

Perturbation of the second sec

No significant difference in puncture time nor in paths

Martin et Al. – RSNA 2017

In the Guidance Technology in the Angiography Room: From Cone Beam CT to Stereotaxic Reconstruction From Two Sic Views²

30D (Needle ASSIST, GE) could allow verifying probes position in the 3D anatomy with a 1-2mm accuracy while cing each probe guidance DAP and Air Kerma by 77% and 64% on average, respectively

88

Multi modality fusion for liver ablation in IR

39

on guidance using fusion of preop CT on live US (Logiq E9 Ultrasound, GE) - CBCT used as a bridge for preopCT-live Ultrasound fusion (INTERACT Active Tracker, GE). Needle tip is virtually tracked.

Leveraging any 3D image to allow Ultrasound guidance in IR, reducing dose & contrast

83

Portal vein embolization guidance using fusion of preop CT on live US (Logiq E9 Ultrasound, GE) - CBCT used as a bridge for automatic preopCT-live Ultrasound fusion (INTERACT Active Tracker, GE). Leveraging any 3D image to allow Ultrasound guidance in IR, reducing dose & contrast

40

Conclusion

Each procedure has specific needs & deserves optimal imaging

- Dose reduction can be achieved through: image acquisition techniques image processing 2D & 3D advanced planning & guidance
- 2D & 3D advanced applications can help: better understand anatomy better plan treatment increase operator confidence decrease number of DSAs, dose & contrast ease guidance decrease procedure time improve treatment outcome

83

Thank you!

Any comment / question?