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— Aim of the SPARE challenge

— How the challenge datasets were generated
— How image quality was quantified

— The top 4 performing teams

— Access to the full datasets
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4D cone-beam CT
: |

— 1 minute scan —  2-4 minutes

— Motion blur — Undersampling artifacts
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4D-CT 4D-CBCT
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4DCBCT-based model for intrafraction motion monitoring
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High quality 4D-CBCT from a standard one-minute scan?

— Shorter scan time
— Lower dose
— High quality 4D-CBCT on every system

Standard 3D reconstruction Conventional 4D reconstruction
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Algorithms for reconstructing undersampled 4D-CBCT data

Number of publications on 4D-CBCT reconstruction
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Algorithms for reconstructing undersampled 4D-CBCT data

— lterative
— Total-variation
— PICCS

— Motion compensation
— Projection space
— Image space

— Prior deformed

— Hybrid
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Image reconstruction in circular cone-beam computed
tomography by constrained, total-variation
minimization

Emil Y Sidky and Xiaochuan Pan

High temporal resolution and streak-free
four-dimensional cone-beam computed tomography

Shuai Leng', Jie Tang!, Joseph Zambelli', Brian Nett',
Ranjini Tolakanahalli’ and Guang-Hong Chen'?-+

On-the-fly motion-compensated cone-beam CT using an a priori
model of the respiratory motion

Simon Rit, Jochem W. H. Wolthaus, Marcel van Herk, and Jan-Jakob Sonke®
Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital,
Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

A

A novel digital tomosynthesis (DTS) reconstruction method using
a deformation field map

Lei Ren®

Simultaneous motion estimation and image reconstruction (SMEIR)
for 4D cone-beam CT
Jing Wang® and Xuejun Gu

Department of Radiation Oncology, The University of Texas Southwestern Medical Center,
Dallas, Texas 75235-8808




SPARE Challenge

Sparse-view Reconstruction
Challenge for 4D Cone-beam CT

Spare scan time
Spare dose



— To systematically investigate the efficacy of various algorithms for 4D-
CBCT reconstruction from a one minute scan.

—  Provide a common dataset for future 4D-CBCT reconstruction studies.
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— Ground truth

— Realistic images
— Patient images -

— Poisson noise

— Scatter NCAT phantom XCAT phantom

— Monte Carlo simulation
of real patient CTs

Patient — no scatter Patient — scatter

IMAGE » INSTITUTE



Data — source volumes for simulation

@ANCER

IMAGING ARCHIVE
4D-Lung dataset

* 20 locally-advanced NSCLC patients

* Patients had multiple 4D-CTs

* Respiratory signal

* 12 patients had at least two 4D-CTs
with acceptable quality

* 32 scans in total

Prof Geoff Hugo gdhugo@wustl.edu

IMAGE X INSTITUTE https: / /wiki.cancerimagingarchive.net /display /Public/4D-Lung
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Data — Monte Carlo simulation
A GPU Tool for Efficient, Accurate, and Realistic
Simulation of Cone Beam CT Projections

Xun Jia', Hao Yan', Laura Cervifio', Michael Folkerts'?, and Steve B.

Jiang'
Total noise
N=N,+N;

4, Noise scaling

Noise signal
N=oN

[1. Ray tracingH Primary signal P

[ 2. MC simulation

Noise on primary
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Noisy primary P

Noisy scatter §
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Respiratory signal

Monte Carlo simulation




Data — Monte Carlo Datasets

Patient XX
AD-CT N — Half-fan scan

— 680 projections over 360 degrees
— No scatter

— 40 mA; 20 ms

— Poisson noise
—  With scatter

— 40 mA; 20 ms

— Poisson noise + scatter

— Low dose & with scatter
— 20 mA; 20 ms

Y, — Poisson noise + scatter

. :
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Clinical Varian Dataset

Fully-sampled Down-sampled

CBCT scans from the 4D-Lung dataset
4 minutes, 2400 half-fan projections
Down-sample to 680 projections
Respiratory signal: RPM

5 patients. 30 scans.

IMAGE » INSTITUTE Prof Geoff Hugo
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Clinical Elekta Dataset

Fully-sampled Down-sampled

Regular 4D-CBCT on an Elekta Versa HD
3 minutes, 1000 full-fan projections
Down-sample to 340 projections
Respiratory signal: Amsterdam Shroud

5 patients. 20 scans.

Dr Simon Rit




Datasets

Monte Carlo

Q patients, 29 scans
3 training scans

Clinical Varian

5 patients, 25 scans
5 training scans

Clinical Elekta

5 patients, 15 scans
5 training scans
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Provided to
participants

For each patient

4D-CT

PTV contour

For each CBCT scan

CBCT projections

Respiratory signal

Blinded from
participants

Ground truth/
Reference volumes




How the challenge was conducted

1. Registration (Dec 2017-15 Jan 201 8)
2. Datasets and instructions sent to participants (31 Jan 2018)
3. The fun began!
4. Deadline: 30 April 2018
5. Analysis completed and summarized to the participants in May
6. Results sent to AAPM
Prior CT o gﬁ‘:i'fr"{ns Submit Analyze

Projection
data

‘ Participants ‘ RGBT » Host ‘ i
reconstructions

Training
sets
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Participant demographics

19 participating teams

100%

80%
60%
40%
20% I
o B =

lterative Motion Prior Machine
optimization compensation deformed learning
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Europe

Asia

5%

Russia




Evaluation metrics

Image similarity Target localization accuracy
= Structural similarity (SSIM) = Alignment of PTV

Ground truth

Alignment

Body O P1Vv

Reconstruction
O Lungs [ Bony anatomy
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Results

— 19 participating teams
— 4 teams completed the entire challenge

— with really impressive results

, i
Let’s remind ourselves this is what can be
achieved with conventional FDK reconstruction...
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Ground truth Method #1 Method #2

s WO 2 S TRV
R % =t
‘i { ) - 4 .
| \ 4 _

IMAGE » INSTITUTE



Ground ’rru’rh

Method #2
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Method #3

Method #4

3







Monte Carlo case#3 — Large CT-CBCT difference
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Results = Structural similarity

} Better
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Structurally, Method#2 is
closest to ground truths
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Results — Target localization accuracy
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Results — target localization accuracy
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Reference

Method #1

Met

hod #2

Method #3

Method #4




Method #3 Method #4
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Simon Rit Cyril Mory Matthew Riblett Yawei Zhang
(CREATIS) (CREATIS) (VCU) Zhuoran Jiang
Geoffrey Hugo Xiaoning Liu

(Washington University) Lei Ren

Motion-aware temporal (Duke University)

4DCT-based regularization Data-driven

motion-compensation (MA-ROOSTER) motion-compensation

Prior deformed

Method #1 Method #2 Method #3 Method #4




amdl ki

= Good quality and = Best overall quality

accuracy and accuracy
= Residual blur = Occasional minor
= Clinically used artifacts
Motion-aware temporal
.4D CT-based . regularization
motion-compensation (MA-ROOSTER)

Method #1 Method #2

IMAGE . INSTITUTE

yrd
= Data driven
=  Good accuracy
"= Motion can be
“visually” unnatural

Data-driven
motion-compensation

Method #3

ﬂﬂl}n
Best visual quality
and details
“CT-like”
Sensitive to CT-
CBCT difference

Prior deformed

Method #4




MC-PICCS

Motion compensation
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Prior

MC-PICCS

PICCS




MA-ROOSTER vs MC-PICCS
Ground truth | MA-ROOSTER MC-PICCS
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Ground truth

MC-PICCS
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MA-ROOSTER vs MC-PICCS

Systematic LR error
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Error magnitude (mm)

Error magnitude (mm)

e . N
L T I

o

-
(2}

-

e
tn

Systematic Sl error

X

1

1

L oy

i |

! ]

! 1

: !
E -

MA-ROOSTER  MC-PICCS

I_Random Sl error

- !
N '
| '
i I
i '
'
'
L)
i
: ]
-~ o
MA-ROOSTER MC-PICCS

£

Error magnitude (mm)
N

-

Error magnitude (mm)

w

-
T

o

© o o o

Systematic AP error

T

= |

I ]

| 1

1 1

I 1

1 1

I 1

I 1

1 1

I 1

T 1

MA-ROOSTER MC-PICCS

Bandom AP error
2t =
]

1t '
]

ST |
6f | X

4 L
1

2r 1 1

- -+
MA-ROOSTER MC-PICCS




Room for improvements

— Noise and artifacts in the ground
truth volumes

— Lack of beam information for
projection calibration and scatter
correction

— CT-CBCT alignment was not
provided

— Better ways to under-sample the
clinical datasets
Ahmad 2012 Med Phys
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— All the data provided to the
participants

— All the ground truth & reference
reconstructions

— MATLAB scripts to automatically
compute evaluation metrics

— A common dataset for future 4D-
CBCT reconstruction studies

— Available from Aug-Sep 2018
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AAPM
ACRF Image X Website

Contact Dr Andy Shieh



http://sydney.edu.au/medicine/image-x/
mailto:andy.shieh@sydney.edu.au

— Accurate and high quality 4D-CBCT from
a one-minute scan is challenging, but
possible

— The use of motion model is critical
— Each method has its own advantages

— Overall, the combination of motion

compensation and iterative regularization
gives the best results l

— The SPARE Challenge datasets will be
publicly available for future studies
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