7/31/2018

The Additive Tree
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1. Machine Learning algorithms.

2. Few thoughts on Interpretability of Machine Learning
algorithms.

3. The Additive Tree Framework.

Statistical Modeling: The Two Cultures

Leo Breiman. Statistical Science. 2001, Vol. 16, No. 3, 199-231.

https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
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Before Machine Learning
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Machine Learning vs Statistics (Not really)
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The reasons for the hype

Classification: Wolf or a Husky?

Only 1 mistake! ="

Press release: “ Artificial Intelligence classifies Husky vs Wolfs with super human performance....”

lideshar d laining-blackbe hine-ls dicti




Reality:Accuracy is not Intelligence

ps: 2 8-

https://arxiv.org/pdf/1602.04938.pdf
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Leo Breiman. Statistical Science. 2001, Vol. 16, No. 3, 199-231.

https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
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Reasons for interpretability

The need for interpretable models in medicine rises from practical and
theoretical reasons:

1. Acceptance.

2. Known limitations of observational training data (cofounders,
noise, bias, etc)

3. Mismatch between the objective function maximized by machine
learning algorithms and the ethical needs in medicine.

1. Acceptance
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Teach, RIL and EH. Shorife, Research, 1961. 14(5): p. 54

2. Limitations of observational data

Example: Predicting Risk of dying of Pneumonia for In-hospital patients

Most accurate model trained: Multi-purpose neural net....

Rule Based Model

Asthmatic mmmmmmmp Lower Risk

» Harmful to patients =
» High Risk of Liability

htps:/www.ncbi.nim.nih 040894




2. Limitations of observational data

Example: Predicting Risk of stroke for Emergency Department patients

TABLE 1—PREDICTING AND MISPREDICTING
Stroke 30-day
mortality
[Prior stroke 0.302 0.041 |
(0.012) (0.014)
[Prior accidental injury 0.285 0.007 |
T0.095] [0.T01)
[Abnormal breast finding 0.224 0162 |
(0.002) (0. 110)
[Cardiovascular disease history 0218 —0.017 |
(0.029) (0.034)
[Colon cancer screening 0.242 0.475
(0.178) (0.223
[Acute sinu 0.056 |
0.T66]

B ind prior diag-
77,825 ED visits in 2010-2012

Review 1075 476-480

2. Limitations of observational data

Bias in Medicine

1. P: i salient diseases are over-

“Cognitive Biases and Heuristics in Medical Decision Making: A Critical Review Using a
Systematic Search Strategy.” Medical Decision Making 35 (4): 539-57.

2. Physicians are 40 percent less likely to refer female or black patients for catherization.
“Effect of Race and Sex on Physicians’ Recommendations for Cardiac Catheterization.”
New England Journal of Medicine 340: 618-26.

3. Minorities receive less ive cancer

“Racial Differences in the Treatment of Early-Stage Lung Cancer.”
New England Journal of Medicine 341: 1198-1205.

3. Mismatch between the objective function
maximized by machine learning algorithms and
the ethical needs in medicine.

Machine Learning
Ey (1Y = Yy)l%) = Ey(1(Y = Ypp)|x)
Wish to have:
E,(1(Y = Y, 10) 2 E,(1(Y = Ypp)|x) VX €P

More realistic and also impossible.
E) (1Y =Yp)Ix) 2 E), (1Y =1)|x) Vx EP; S P
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3. Moral Problem

& MORAL
& MACHINE

What should the self-driving car do?

http://moralmachine.mit.edu/

Reasons for interpretability

The need for interpretable models in medicine rises from
practical and theoretical reasons:

1. Acceptance.

2. Known limitations of observational training data
(cofounders, noise, bias, etc)

3. Mismatch between the objective function maximized by
machine learning algorithms and the ethical needs in
medicine.
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Fig. 1
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Decision Trees are globally interpretable
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Diagnosis (Output)

Example Intorprotable Rules Induced by MediBoost:
A3 Uniformity of Gell Shape = 1.0 A A2 Uniformity of Gall Size = 3.0 A A7 Bland Ghromatin =3.0 = pradict benign

A3 Uniformity of Call Shapa > 1.0 A AG Bars Nuclsl = 1.0 A A2 Uniformity of Gl Siza ~ 3.0 = pradict mallgnant

Decision Tree Accuracy

All Problems:
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Average ranking of the ML algorithms over all datasets. Error bars indicate the 95% confi-

dence interval.

“ Data-driven Advice for Applying Machine Learning to Bicinformatics Problems.” Randal s. Olson et al.
https://arxiv.org/pdf/1708.05070.pdf

The Additive Tree

Single Trees that offer a Continuum between
CART and Gradient Boosting

a

——b F() = P (0 + D 1(x € Ny )Sie e )
—-—)

Fra) Ki=2
S
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Example of a tree built using MediBoost and its full boosting interpretation. K-1 assumed to be
2. Sye(x;, ae) assumed to be stumps to obtain same architecture as CART. ay in represents the
index of the feature where the split will be made, the cutoff value and the constant £ that the
stumps predict. The Function Fu(x) at each terminal node is given by the sum of the fs.

No
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Statistical characteristics of the 95 Penn ML

Experiments

Benchmarks used in the experimental validation of TSB

Mean

Std
deviation

# Instances

1713

2900

# Attributes

The Additive Tree vs CART

36

111

Accuracy comparable to Gradient Boosting while building

smaller trees than CART

Balanced Accuracy (Row > Calumn)
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The Additive Tree with Linear Models in the Nodes:
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LR and

BBl defined by s,,(x,). Finally, new
models L, L1, are addedat each node. Further partitions linea

modelscan be added to gt a deepertree.
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The Additive Tree in Radiation Oncology

rtemis::s.MDB
Prune: prune.ndb () Plot: mplot3.mdb( )
« Remove empty leaves « Interface to graphviz
* Remove siblings with same prediction « Option to prune internally

* Remove inner nodes with no siblings
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Conclusions

* The Additive Trees creates Decision Trees that
would be drop-in replacements from currently
used trees.

* The Additive Tree is the most accurate
decision tree algorithm up to date that keeps
the same structure as CART.
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An R package will be released soon: gilmervaldes@ucsf.edu
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Available in Matlab and R

* Valdes et al “MediBoost: a patient stratification tool for
interpretable decision making in the era of precision
medicine. ” Nat Sci Rept. 2016

¢ Luna et al “Tree-Structured Boosting: Connection between

Gradient Boosted Stumps and Full Decision Trees.” NIPS 2017.

http://www.mediboostml.com/

https://egenn.qgithub.io/rtemis/rtemis mediboost vignette.html
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https://egenn.github.io/rtemis/rtemis_mediboost_vignette.html

