Exposure Indicator Tracking

April 1, 2019
Katie Hulme, MS, DABR
Diagnostic Medical Physicist
Cleveland Clinic

Disclosures

None

Acknowledgments

- Kathleen Scilla (Cleveland State University)
- Ryan Fisher (Metro Health)

Outline

- Review the Exposure Index (EI) and Deviation Index (DI) as defined by IEC 62494-4
- Review key findings and takeaways from TG-232 regarding of the DI for ongoing quality control
- Discuss how to analyze EI data to assess the efficacy of dose-reduction measures taken during the DR retrofit process
- Discuss our experience using one methodology for setting target EI values (EI_T)

The Exposure Index (EI)

IEC standard 62494-1

Summary IEC 62494-1

- The IEC Exposure index (EI) is linear with incident detector air kerma
- The standard explicitly defines the conditions under which the EI shall be calibrated
 - Relationship between EI and incident detector air kerma will vary with beam quality

Exposure Index (EI)

 The exposure index (EI) shall be related to the value of interest (V) according to the formula:

$$EI = c_0 \cdot g(V)$$

- $c_0 = 100 \, \mu \text{Gy}^{-1}$
- g(V) is the equipment-specific inverse calibration function

Inverse Calibration Function

• $g(V_{CAL})$ is the inverse calibration function:

$$K_{CAL} = f^{-1}(V_{CAL}) = g(V_{CAL})$$

 The specified inverse calibration function shall have an <u>uncertainty of less than 20%</u> under calibration conditions

Exposure Index (EI)

• Thus, under calibration conditions:

$$EI = c_0 \cdot K_{CAL}$$

- K_{CAL} is the receptor air kerma (in μ Gy) under calibration conditions (RQA5)
- $| \bullet \quad c_0 = 100 \ \mu \text{Gy}^{-1} |$

Summary IEC 62494-1

- The standard does not define the method by which the vendor:
 - Determines the Relevant Image Region
 - Calculates the Value of Interest
- Calculated EI value for clinical images will be dependent on:
 - Beam quality
 - Patient anatomy
 - Vendor algorithms (for determination of VOI)

Deviation Index (DI)

• If target exposure index (EI_T) values are provided by the system, the deviation index (DI) shall be automatically calculated according to:

$$DI = 10 \cdot \log_{10} \left(\frac{EI}{EI_T}\right)$$

NOTE 1 For this purpose, the TARGET EXPOSURE INDEX values for different examinations/applications need to be available on the digital x-ray imaging system, e.g. in a data base. Such values may be established by professional societies or by the responsible organization. IEC 62494-1 (page 12)

Exposure Indicator Tracking

Lessons from TG-232

TG-232

Charge:

 To investigate the current state of practice for CR/DR Exposure and Deviation Indices based on AAPM TG 116 and IEC-62949, for the purpose of establishing achievable goals (reference levels) and action levels in digital radiography

TG-232

- Findings:
 - Many DI fell outside TG-116 significant action limits
 - Mean DI was often not equal to 0.0
 - Use of AEC resulted in a narrower DI distribution

TABLE XV. Recommended action limits and associated actions for the deviation index (DI).

DI	Possible action
DI outside ± 1 standard deviation	Log for possible review, tally number of occurrences for periodic review
DI greater than +2 standard deviations	See fault tree in Fig. 7
DI less than -2 standard deviations	See fault tree in Fig. 8

Dave J., Jones A., Fisher R., Hulme K., et. al, Current state of practice regarding digital radiography exposure indicators and deviation indices: Report of AAPM Imaging Physics Committee Task Group 232, Med Phys 45(11): e1146-31160, 2018.

TABLE XV. Recommended action limits and associated actions for the deviation index (DI).

DI	Possible action
DI outside ± 1 standard deviation	Log for possible review, tally number of occurrences for periodic review
DI greater than +2 standard deviations	See fault tree in Fig. 7
DI less than -2 standard deviations	See fault tree in Fig. 8

Dave J., Jones A., Fisher R., Hulme K., et. al, Current state of practice regarding digital radiography exposure indicators and deviation indices: Report of AAPM Imaging Physics Committee Task Group 232, Med Phys 45(11): e1146-31160, 2018.

TABLE XIII. Standard deviation (SD) of the DI for adult radiography.

		Site with the smallest SD of the DI ^a		Site with the largest SD of the DI ^a	
Body part	View	Number of exams	SD of DI	Number of exams	SD of DI
Abdomen	KUB	3746	1.8	8389	3.1
	Upright	931	1.3	1002	2.9
	Decubitus	6401	2.3	1200	3.6
Chest	AP	12491	2.0	43915	2.3
	PA	12061	1.7	20424	2.2
	Lateral	20810	1.7	16260	1.9
	Decubitus	_	_	_	_
Pelvis	AP	2236	1.6	1480	2.8
Extremity	Lower Extremity	17175	2.7	83209	3.3
	Upper Extremity	4877	1.8	21389	2.7

^{-:} Insufficient sample size (data provided in Appendix A in Data S1 (Supporting Information) for reference).

Typical distribution in DI was characterized by a SD of 1.3-3.6 and is affected by:

- Practice:
 - Techniques, AEC calibration
- Exposure indicator accuracy
- How the *value of interest* is calculated (vendor-specific)

^aNumber of examinations from site was at least 10% of the total number of examinations from all sites.

TG-232 Recommendations

Step 1

 "This task group recommends that a mean DI of 0.0 be targeted for all body parts and views. This requires that EI_T values be set appropriately"

TG-232 Recommendations

Step 2

 "As a starting point, this task group recommends that action limits for the DI be set at ±1 and ±2 SD of the DI based on actual DI data of an individual site..."

Analyzing EI/DI Dose Statistics

Objectives

- Ensure techniques (manual and phototimed) were successfully reduced for the change in detector technology
- Determine the appropriate EI_T values (by body part and/or view) to achieve a mean DI of 0.0

Data Collection

- Scope of retrofits:
 - 38 Agfa DR 14s panels
 - 25 different sites
- Subset of units selected
- Data exported from:
 - ★ <u>5 Sites</u>
 - 8 workstations

Data Collection

- Subset of units selected
- Data exported from:
 - 5 Sites
 - 8 workstations

Make	Model	Count	
Shimadzu	RadSpeed	20	
Reliance	ATC 725	5	
Shimadzu	Fluoro Speed	3	
Quantum	MC 150 Pinnacle	2	
Siemens	Multix Top Pro	2	
Bennett	Compu-mAs	1	
GE	AMX-4	1	
Philips	Easy Diagnost Eleva	1	
Philips	Optimus	1	
Picker	RadView 65	1	
Siemens	Sireskop SD	1	

- Criteria for selected workstations:
 - Workstation was affiliated with a single radiographic unit and CR reader prior to DR retrofit
 - Workstation was affiliated with a Shimadzu RadSpeeds
- Comments:
 - 7 units used Agfa HD5.0 CR plates
 - 1 unit used Agfa MD4.0 CR plates

Exporting Dose Statistics

Data Collection

- Prior to DR retrofits, collected 12 months of EI data from 8 CR workstations
- Data extracted ~3 months following DR panel installation from the same 8 workstation (preliminary DR dataset)*
- Data extracted again 12 months following DR panel installation from the same 8 workstations (final DR dataset, includes preliminary data)

Detector Technology	Months of Dose Stats	N - Exams
CR	12	133,759
DR	~3 (preliminary*)	39,658
DR	12	141,209

^{*} Preliminary data presented at 2018 AAPM annual meeting - **Hulme K.**, Scilla K., Fisher R.*, Li X., Investigation of State-of-Practice Using Exposure Index (EI) Data Following Digital Radiography (DR) Retrofits of Eight Radiographic Units, Med Phys 45(6):e694, 2018.

Distribution in exposure index is log-normal

 Collected and analyzed El values for each exam group (k)

Distribution in deviation index is normal (usually...)

Calculated DI_{ref} for each exposure index using a TEI_{ref} of 400 for CR exams and 250 for DR exams

 Note: for a normal distribution, choice of TEI_{ref} will not affect the SD(DI_{ref}), only the mean

"Reference El_T" (TEI_{ref}) ← Not defined by IEC, metric used for analysis purposes only

El corresponding to target detector dose used for AEC calibration

- CR: $TEI_{ref} = 400$ (target detector dose 4.0 μ Gy for MD 4.0)
- DR: TEI_{ref} = 250 (target detector dose 2.5 μGy for Agfa DR 14s)

 Calculated mean and standard deviation in DI_{ref} for each exam group (k)

Mean (DI_{ref,k}) SD(DI_{ref,k})

Assessing Dose-Reduction Measures

Post-Retrofit Performance

Objectives

- Ensure techniques (manual and phototimed) were successfully reduced for the change in detector technology
- Determine the appropriate EI_T values (by body part and/or view) to achieve a mean DI of 0.0

Steps to Success:

	T	ABLET	OP		
	м			anual Technique	
Exam Group	View	SID (in)	Grid	kVp	mAs
Ankle	AP	40	N	60	2.5
	OBL	40	N	60	2.5
	LAT	40	N	60	2.5
Elbow	AP	40	N	60	2.0
	OBL	40	N	60	2.0
	LAT	40	N	60	2.0
Finger	AP	40	N	55	1.2
Foot	AP	40	N	56	2.0
	LAT	40	N	58	2.0
Forearm	AP	40	N	58	2.0
Hand	AP / OBL	40	N	60	1.5
	LAT	40	N	63	1.5
Heel	LAT	40	N	60	2.5
	Axial	40	N	66	4.9
Hip	Hip	40	N	68	6.8
-	cross-table	40	N	85	37.1
Humerus	Humerus	40	N	65	3.1
Knee	AP	40	N	65	2.0
	LAT	40	N	65	2.0
	Tunnel	40	N	70	2.5
	Merchant	40	N	70	2.5
Shoulder	Axilary	40	N	70	4.9
Tib/Fib	Leg	40	N	65	2.5

Calibrate AEC

Develop Manual Technique Chart

Program the APR

Educate Technologists

Analysis by Exam Group

EI_{ref,k}

El value corresponding with mean DI_{ref} for a given exam exam group (k)

Compare El_{ref,k} before and retrofit to determine nominal dose reduction for that exam group

From Crown (k)	N	1	EI,	ref,k	
Exam Group (k) - Phototimed	CR	DR	CR	DR	% Diff
Abdomen	2476	2401	318	247	-22%
Abdomen GI	205	152	403	320	-21%
Abdomen GU	483	501	338	250	-26%
C-Spine	5978	5357	372	235	-37%
Chest	25780	15777	296	155	-48%
Femur Knee Leg	29319	34963	457	300	-34%
L/S Spine	11102	9556	636	329	-48%
Mandible & TMJ	82	78	332	232	-30%
Nasal and Orbits	177	58	284	271	-5%
Pelvis & Hip	13489	14926	606	326	-46%
Shoulder	10407	11785	455	334	-36%
Skull, Sinus & Facial	489	478	425	334	-21%
T-Spine	1503	1411	534	273	-49%
Total:	101490	97443	Weighte	d Average:	-40%

Phototimed Exam Groups

- Saw reductions in mean El_{ref,k} for all exam groups (~40%)
- Expected dose reductions of ~ 28% for HD5.0 CR plates and ~ 37% for MD4.0 plates

From Group (b)	Λ	1	El,	ref,k	
Exam Group (k) - Phototimed	CR	DR	CR	DR	% Diff
Abdomen	2476	2401	318	247	-22%
Abdomen GI	205	152	403	320	-21%
Abdomen GU	483	501	338	250	-26%
C-Spine	5978	5357	372	235	-37%
Chest	25780	15777	296	155	-48%
Femur Knee Leg	29319	34963	457	300	-34%
L/S Spine	11102	9556	636	329	-48%
Mandible & TMJ	82	78	332	232	-30%
Nasal and Orbits	177	58	284	271	-5%
Pelvis & Hip	13489	14926	606	326	-46%
Shoulder	10407	11785	455	334	-36%
Skull, Sinus & Facial	489	478	425	334	-21%
T-Spine	1503	1411	534	273	-49%
Total:	101490	97443	Weighte	d Average:	-40%

Phototimed Exam Groups

- Saw reductions in mean EI_{ref,k} for all exam groups (~40%)
- Expected dose reductions of ~ 28% for HD5.0 CR plates and ~ 37% for MD4.0 plates
- Larger reduction in chest imaging also due to change in speed class setting

Even Creun (k)	Λ	1	El,	ref,k	
Exam Group (k) - Phototimed	CR	DR	CR	DR	% Diff
Abdomen	2476	2401	318	247	-22%
Abdomen GI	205	152	403	320	-21%
Abdomen GU	483	501	338	250	-26%
C-Spine	5978	5357	372	235	-37%
Chest	25780	15777	296	155	-48%
Femur Knee Leg	29319	34963	457	300	-34%
L/S Spine	11102	9556	636	329	-48%
Mandible & TMJ	82	78	332	232	-30%
Nasal and Orbits	177	58	284	271	-5%
Pelvis & Hip	13489	14926	606	326	-46%
Shoulder	10407	11785	455	334	-36%
Skull, Sinus & Facial	489	478	425	334	-21%
T-Spine	1503	1411	534	273	-49%
Total:	101490	97443	Weighte	d Average:	-40%

Phototimed Exam Groups

- Saw reductions in mean EI_{ref,k} for all exam groups (~40%)
- Expected dose reductions of ~ 28% for HD5.0 CR plates and ~ 37% for MD4.0 plates
- Larger reduction in chest imaging also due to change in speed class setting
- Large reductions in L/S Spine & Pelvis & Hip groups due to erroneous El values (>5000) in the CR data due to segmentation issues

Exam Group (k) -	N		SD(E)) _{ref,k}	
Phototimed	CR	DR	CR	DR	Diff
Abdomen	2476	2401	2.60	1.69	-0.90
Abdomen GI	205	152	1.68	2.14	0.46
Abdomen GU	483	501	2.55	1.86	-0.69
C-Spine	5978	5357	2.68	2.57	-0.11
Chest	25780	15777	2.52	1.63	-0.89
Femur Knee Leg	29319	34963	2.38	2.54	0.16
L/S Spine	11102	9556	3.17	1.70	-1.47
Mandible & TMJ	82	78	2.03	2.44	0.42
Nasal and Orbits	177	58	3.08	2.46	-0.62
Pelvis & Hip	13489	14926	2.82	2.31	-0.51
Shoulder	10407	11785	2.86	2.60	-0.26
Skull, Sinus & Facial	489	478	2.16	2.01	-0.15
T-Spine	1503	1411	2.94	2.58	-0.36
Total:	101490	97443	Weighte	d Average:	-0.42

Phototimed Exam Groups

 Standard deviation in DI_{ref,k} was reduced, on average, by 0.4

Exam Group (k) -	N		SD(E	OI) _{ref,k}	
Phototimed	CR	DR	CR	DR	Diff
Abdomen	2476	2401	2.60	1.69	-0.90
Abdomen GI	205	152	1.68	2.14	0.46
Abdomen GU	483	501	2.55	1.86	-0.69
C-Spine	5978	5357	2.68	2.57	-0.11
Chest	25780	15777	2.52	1.63	-0.89
Femur Knee Leg	29319	34963	2.38	2.54	0.16
L/S Spine	11102	9556	3.17	1.70	-1.47
Mandible & TMJ	82	78	2.03	2.44	0.42
Nasal and Orbits	177	58	3.08	2.46	-0.62
Pelvis & Hip	13489	14926	2.82	2.31	-0.51
Shoulder	10407	11785	2.86	2.60	-0.26
Skull, Sinus & Facial	489	478	2.16	2.01	-0.15
T-Spine	1503	1411	2.94	2.58	-0.36
Total:	101490	97443	Weighte	d Average:	-0.42

Phototimed Exam Groups

- Standard deviation in DI_{ref,k} was reduced, on average, by 0.4
- A reduction in DI_{ref,k} was observed for all exam groups <u>except</u>:
 - Abdomen GI*
 - Femur Knee Leg
 - Mandible & TMJ*

*low volume

Even Croup (k)		V	EI	ref,k	0/ D ;ff
Exam Group (k) - Manual	CR	DR	CR	DR	% Diff Full
Ankle & Foot	16308	20941	785	406	-48%
Hand & Wrist	11608	17368	890	645	-28%
Humerus, Elbow, Forearm	4553	5457	930	574	-38%
Total:	32269	43755	Weight	ed Average:	-39%

Manual Exam Groups

Saw reductions in mean EI_{ref,k} for all exam groups

Even Croup (k)	I	V	SD(E	I _{ref,k})	
Exam Group (k) - Manual	CR	DR	CR	DR	Diff
Ankle & Foot	16308	20941	2.01	2.15	0.14
Hand & Wrist	11608	17368	1.74	2.16	0.43
Humerus, Elbow, Forearm	4553	5457	2.28	2.06	-0.23
Total:	32269	43755	Weighte	ed Average:	0.20

Manual Exam Groups

- Saw reductions in mean EI_{ref,k} for all exam groups
- Standard Deviation in DI changes had mixed results
 - Ankle & foot groups were similar
 - Hand & wrist groups increased
 - Humerus, Elbow, & Forearm decreased
- Initial review of site data for Hand & Wrist exam group showed no explanation for increase in SD(DI)
 - Next step is a more granular analysis of individual views

Conclusions

- Exposure indices corresponding to mean(DI_{ref}) reduced for all exam groups
 - Average reduction of 40% for both phototimed and manual exams
- Standard deviation in DI decreased for most exam groups
- Dose reduction is possible when transitioning from CR to DR... but work must be done!

Setting Target EI (EI_T) Values

New Detector – New Targets!

Objectives

- Ensure techniques (manual and phototimed) were successfully reduced for the change in detector technology
- Determine the appropriate EI_T values (by body part and/or view) to achieve a mean DI of 0.0

Preliminary EI_T

- Initial set of EI_T values provided to applications at install were derived from our EI_T values for CR
 - E_T values linearly scaled for change in target detector dose:

$$EI_{T,DR} = \frac{2.5\mu Gy}{4.0\mu Gy} EI_{T,CR}$$

- EI_T values were assigned by exam group and were not broken down by view

Preliminary EI_T

- Initial set of EI_T values provided to applications at install were derived from our EI_T values for CR
- However:
 - Values were derived from data collected in 2013
 - Different detector technologies (different sensitivities to beam quality)
 - Several tweaks made to manual technique charts, some changes in speed class settings

Potential Methodologies

- Statistical approach ("laissez-faire approach")
 - Collect data to determine state of practice and derive target values from the results
- Deterministic approach ("AEC approach")
 - Set EI_T values using the nominal detector dose required to achieve acceptable image quality
- Experimental approach ("phantom approach")
 - Use geometric or anthropomorphic phantoms to simulate the anatomy of interest

Potential Methodologies

- Statistical approach ("laissez-faire approach")
 - Collect data to determine state of practice and derive target values from the results
- Deterministic approach ("AEC approach")
 - Set EI_T values using the nominal detector dose required to achieve acceptable image quality
- Experimental approach ("phantom approach")
 - Use geometric or anthropomorphic phantoms to simulate the anatomy of interest

Hybrid Approach: the "slightly less laissez-faire approach?"

Preconditions

- El accuracy has been verified
- AEC has been calibrated to achieve an EI_T corresponding with the nominal recommended detector dose

Questions

- When is appropriate to set EI_T values for an exam group/body part, and when should values be assigned separately for individual views?
 - Keep things as simple as possible (fewer bins is better)!
 - How accurate does EI_T need to be?
 - Considering accuracy of EI (±20%), AEC calibration (±30%?)
- Are there instances when statistics from state of practice should not be used to set El_⊤ values?

Collect some data!

- The more data points the better
- Include data from more than one site
- Limit sample to units where AEC is known to have been calibrated to a target detector dose using a standardized procedure

We used same dataset as before

- Subset of units selected
- Data exported from:
 - 5 Sites
 - 9 workstations

Make	Model	Count
Shimadzu	RadSpeed	20
Reliance	ATC 725	5
Shimadzu	Fluoro Speed	3
Quantum	MC 150 Pinnacle	2
Siemens	Multix Top Pro	2
Bennett	Compu-mAs	1
GE	AMX-4	1
Philips	Easy Diagnost Eleva	1
Philips	Optimus	1
Picker	RadView 65	1
Siemens	Sireskop SD	1

- Criteria for selected workstations:
 - Workstation was affiliated with a single radiographic unit and CR reader prior to DR retrofit
 - Workstation was affiliated with a Shimadzu RadSpeeds
- Added 1 additional workstation from site A (ortho clinic) to obtain more data points for extremity work

Collect some data! Analyze the data at the exam group level

- Start coarse, and get more granular as needed
- Don't use the vendor's default EI_T values, normalize all EI values to a reference EI (EI_{ref}) corresponding to the nominal detector dose used for AEC calibration
- For each exam group, calculate the Mean(DI_{ref,k}), SD(DI_{ref,k}), Skew(DI_{ref,k}), and Sample Excess Kurtosis(DI_{ref,k})

- Note: these criteria worked for our fixed rad rooms with Agfa DR but have not been verified for any other vendor
- *Depending on typical values for the SD(DI_{ref,k}) for your facilities, you may need to use a less stringent criteria

Remainder of presentation will just use "Kurtosis" to refer to "Sample Excess Kurtosis"

L/S-Spine	All Sites
N	9714
Mean(DI _{ref})	1.19
SD(DI _{ref})	1.70
Skew(DI _{ref})	0.96
Kurtosis(DI _{ref})	4.52
$El_{ref,k}$	329

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

✓

 $|Skew(DI_{ref,k})| \le 1.5$

②

Kurtosis($DI_{ref,k}$) > 0

②

Abdominal Exams

Abdomen	All Sites
N	2402
Mean(DI _{ref})	-0.05
$SD(DI_{ref})$	1.69
Skew(DI _{ref})	0.70
Kurtosis(DI _{ref})	4.02
$EI_{ref,k}$	247

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

⊘

 $|Skew(DI_{ref,k})| \le 1.5$

②

Kurtosis($DI_{ref,k}$) > 0

⊘

Set El_T for <u>exam group</u> using El_{ref,k}:

$$EI_{ref,k} = TEI_{ref} \cdot 10^{\underbrace{\text{Mean}(DI_{ref,k})}_{10}}$$

L/S-Spine	All Sites
N	9714
Mean(DI _{ref})	1.19
SD(DI _{ref})	1.70
Skew(DI _{ref})	0.96
Kurtosis(DI _{ref})	4.52
$EI_{ref,k}$	329

Are the following criteria met?

 $SD(Dl_{ref,k}) < 2.5$

 \bigcirc

 $|Skew(DI_{ref,k})| \le 1.5$

②

Kurtosis($DI_{ref.k}$) > 0

②

$$EI_{ref,k} = 250 \cdot 10^{\frac{1.19}{10}} = 329$$

$$EI_{T, L/S Spine} = 330$$

Abdominal Exams

Abdomen	All Sites
N	2402
Mean(DI _{ref})	-0.05
SD(DI _{ref})	1.69
Skew(DI _{ref})	0.70
Kurtosis(DI _{ref})	4.02
$EI_{ref,k}$	247

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

✓

 $|Skew(DI_{ref,k})| \le 1.5$

②

Kurtosis($DI_{ref,k}$) > 0

②

$$EI_{ref,k} = 250 \cdot 10^{\frac{-0.05}{10}} =$$
247

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

 $|Skew(DI_{ref,k})| \le 1.5$

✓

Kurtosis($DI_{ref,k}$) > 0

rta.rta.s.a.a.

9 out of 17 exam groups met these criteria:

Exam Group	N	Mean(DI _{ref})	$SD(DI_{ref})$	Skew(DI _{ref})	Kurtosis(DI _{ref})	EI _{T,k} *
C-Spine	5490	-0.27	2.56	0.32	0.10	
Abdomen	2402	-0.05	1.69	0.70	4.02	
Abdomen GI	152	1.07	2.14	0.54	0.73	250
Abdomen GU	501	-0.02	1.86	0.29	0.76	
Chest	15811	-2.06	1.69	1.59	8.06	
L/S Spine	9714	1.19	1.70	0.96	4.52	330
Pelvis & Hip	15994	1.16	2.34	1.06	2.88	
Ribs	2353	0.47	2.35	0.03	-0.38	
Shoulder	13543	0.71	2.62	0.31	0.17	
T-Spine	1431	0.40	2.57	0.30	-0.15	
Ankle & Foot	20941	1.55	2.15	0.15	0.56	360
Femur Knee Leg	38498	0.85	2.52	0.62	0.56	
Hand & Wrist	17368	3.55	2.16	-0.06	2.25	570
Humerus, Elbow & Forearm	5457	3.13	2.06	-0.33	1.76	510
Mandible & TMJ	78	-0.31	2.44	0.46	-0.45	
Nasal & Orbits	58	0.35	2.46	-0.35	0.36	271
Skull, Sinus & Facial	478	1.26	2.01	-0.43	0.86	334

^{*}Values derived from Mean(D_{ref k}) and rounded to nearest 10

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

 $|Skew(DI_{ref,k})| \le 1.5$

Kurtosis($DI_{ref,k}$) > 0

9 out of 17 exam groups met these criteria:

· · · · · · · · · · · · · · · · · · ·							4
Exam Group	N	Mean(DI _{ref})	SD(DI _{ref})	Skew(DI _{ref})	Kurtosis(DI _{ref})	El _{T,k} *	
C-Spine	5490	-0.27	2.56	0.32	0.10		
Abdomen	2402	-0.05	1.69	0.70	4.02		
Abdomen GI	152	1.07	2.14	0.54	በ 73	250	l .
Abdomen GU	501	-0.02	1.86	- values high	ner than for A	Ankle :	and Foo
Chest	15811	-2.06	1 1 / 0				
L/S Spine	9714	1.19	1.70	Due to anai	omy and val	ue or	interest
Pelvis & Hip	15994	1.16	2.34 _	OR, are ma	inual techniq	ues fo	r these
Ribs	2353	0.47	1 225		•		
Shoulder	13543	0.71	2.62	exam group	s too high?		
T-Spine	1431	0.40	2.57	0.30	-0.15		
Ankle & Foot	20941	1.55	2.15	0.15	0.56	360	
Femur Knee Leg	38498	0.85	2.52	0.62	0.56		
Hand & Wrist	17368	3.55	2.16	-0.06	2.25	570	
Humerus, Elbow & Forearm	5457	3.13	2.06	-0.33	1.76	510	
Mandible & TMJ	78	-0.31	2.44	0.46	-0.45		
Nasal & Orbits	58	0.35	2.46	-0.35	0.36	271	
Skull, Sinus & Facial	478	1.26	2.01	-0.43	0.86	334	

^{*}Values derived from Mean(D_{ref k}) and rounded to nearest 10

Chest	All Sites
N	15811
Mean(DI _{ref})	-2.06
SD(DI _{ref})	1.69
Skew(DI _{ref})	1.59
Kurtosis(DI _{ref})	8.06
$El_{ref,k}$	155.4

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

 \bigcirc

 $|Skew(DI_{ref,k})| \le 1.5$

<u>@</u>

Kurtosis($DI_{ref,k}$) > 0

3

Chest	All Sites	PA Chest Portrait	PA Chest Landscape	LAT Chest
N	15811	2756	5449	7303
Mean(DI _{ref})	-2.06	-2.90	-2.85	-1.22
SD(DI _{ref})	1.69	1.27	1.56	1.40
Skew(DI _{ref})	1.59	3.47	3.68	1.04
Kurtosis(DI _{ref})	8.06	27.10	25.75	8.06
$El_{ref,k,i}$	155	128	130	189

Are the following criteria met (@ view level)?

 $SD(DI_{ref,k}) < 2.0$

Kurtosis($DI_{ref,k}$) > 0

 $\widetilde{\mathscr{O}}$

Chest	All Sites	PA Chest Portrait	PA Chest Landscape	LAT Chest
N	15811	2756	5449	7303
Mean(DI _{ref})	-2.06	-2.90	-2.85	-1.22
SD(DI _{ref})	1.69	1.27	1.56	1.40
Skew(DI _{ref})	1.59	3.47	3.68	1.04
Kurtosis(DI _{ref})	8.06	27.10	25.75	8.06
$EI_{ref,k,i}$	155	128	130	189

Are the following criteria met?

$$EI_{ref,k} = 250 \cdot 10^{\frac{-1.22}{10}} = 190$$

 $EI_{T, LAT Chest} = 190$

Chest	All Sites	PA Chest Portrait	PA Chest Landscape	LAT Chest
N	15811	2756	5449	7303
Mean(DI _{ref})	-2.06	-2.90	-2.85	-1.22
SD(DI _{ref})	1.69	1.27	1.56	1.40
Skew(DI _{ref})	1.59	3.47	3.68	1.04
Kurtosis(DI _{ref})	8.06	27.10	25.75	8.06
$EI_{ref,k,i}$	155	128	130	189

When it's more complicated....

Are the following criteria met (@ view level)? $SD(Dl_{ref,k}) < 2.5$

Kurtosis($DI_{ref,k}$) > 0

- Skew high for PA Chest due to long right tail
- Further investigation revealed tail due to practice at 2 of the sites
- Mean(DI_{ref}) relatively unaffected by tail, can still set EI_T

When it's more complicated....

Are the following criteria met (@ view level)?

$$SD(DI_{ref,k}) < 2.5$$
 $Kurtosis(DI_{ref,k}) > 0$

$$EI_{ref,k} = 250 \cdot 10^{\frac{-2.90}{10}} = 128$$

$$EI_{T, PA Chest} = 130$$

Chest	All Sites	PA Chest Portrait	PA Chest Landscape	LAT Chest
N	15811	2756	5449	7303
Mean(DI _{ref})	-2.06	-2.90	-2.85	-1.22
$SD(DI_{ref})$	1.69	1.27	1.56	1.40
Skew(DI _{ref})	1.59	3.47	3.68	1.04
Kurtosis(DI _{ref})	8.06	27.10	25.75	8.06
$EI_{ref,k,i}$	155	128	130	189

When it's more complicated....

3 out of 17 exam groups fell into this category:

Exam Group	N	Mean(DI _{ref})	SD(DI _{ref})	Skew(DI _{ref})	Kurtosis(DI _{ref})	EI _{T,k} *
C-Spine	5490	-0.27	2.56	0.32	0.10	
Abdomen	2402	-0.05	1.69	0.70	4.02	
Abdomen GI	152	1.07	2.14	0.54	0.73	250
Abdomen GU	501	-0.02	1.86	0.29	0.76	
Chest	15811	-2.06	1.69	1.59	8.06	
L/S Spine	9714	1.19	1.70	0.96	4.52	330
Pelvis & Hip	15994	1.16	2.34	1.06	2.88	
Ribs	2353	0.47	2.35	0.03	-0.38	
Shoulder	13543	0.71	2.62	0.31	0.17	
T-Spine	1431	0.40	2.57	0.30	-0.15	
Ankle & Foot	20941	1.55	2.15	0.15	0.56	360
Femur Knee Leg	38498	0.85	2.52	0.62	0.56	
Hand & Wrist	17368	3.55	2.16	-0.06	2.25	570
Humerus, Elbow & Forearm	5457	3.13	2.06	-0.33	1.76	510
Mandible & TMJ	78	-0.31	2.44	0.46	-0.45	
Nasal & Orbits	58	0.35	2.46	-0.35	0.36	270
Skull, Sinus & Facial	478	1.26	2.01	-0.43	0.86	330

^{*}Values derived from Mean(D_{ref k}) and rounded to nearest 10

Example: Chest

Exam Group	View	N	Mean(DI _{ref})	SD(DI _{ref})	Skew(DI _{ref})	Kurtosis(DI _{ref})	$EI_{ref,k,i}$	$EI_{T,k,i}^{*}$	
	Aggregate	15811	-2.06	1.69	1.59	8.06			
	PA CHEST PORTRAIT	2756	-2.90	1.27	3.47	27.10	128		
	PA CHEST LANDSCAPE	5449	-2.85	1.56	3.68	25.75	130	130	
	LORDOTIC CHEST	2	-2.60				138		
	LAT CHEST	7303	-1.22	1.40	1.04	8.06	189		
	AP CHEST LANDSCAPE	136	-0.77	2.40	0.30	-0.65	209	190	
Chest	AP CHEST PORTRAIT	93	-1.22				189		
Chest	LAT STERNUM	12	-1.64				171		
	OBLI STERNUM	21	-0.18				240		
	OBLI CHEST	4	-0.09				245	Larger	
	PA SC JOINT	14	0.34				270	Sample Size	
F	OBLI SC JOINT	14	0.69				293	Needed	
	DECUB AP CHEST	2	1.54				357		
	DECUB PA CHEST	5	2.92				490		

^{*}Values derived from weighted average of Mean(D_{ref,k,i}) and rounded to nearest 10

C-Spine	All Sites
N	5490
Mean(DI _{ref})	-0.27
SD(DI _{ref})	2.56
Skew(DI _{ref})	0.32
Kurtosis(DI _{ref})	0.10
$El_{ref,k}$	235.1

Are the following criteria met?

 $SD(DI_{ref,k}) < 2.5$

8

 $|Skew(DI_{ref,k})| \le 1.5$

②

Kurtosis($DI_{ref,k}$) > 0

Variation between views...

Are the following criteria met (@ view level)?

 $SD(DI_{ref,k}) < 2.5$

②

Kurtosis($DI_{ref k}$) > 0

C-Spine	All Sites	AP C-Spine	LAT C-Spine	OBL C-Spine	OBL C-Spine 2
N	5490	1316	1267	707	700
Mean(DI _{ref})	-0.27	0.63	-0.46	-1.03	-1.02
SD(DI _{ref})	2.56	1.96	2.91	2.51	2.45
Skew(DI _{ref})	0.32	1.69	0.35	0.29	0.42
Kurtosis(DI _{ref})	0.10	5.42	-0.93	-0.79	-0.62
$El_{ref,k,i}$	235.1	247	225	197	198

Are the following criteria met (@ view level)?

$$SD(DI_{ref,k}) < 2.5$$

 $Kurtosis(DI_{ref,k}) > 0$

$$EI_{ref,k} = 250 \cdot 10^{\frac{0.63}{10}} = 289$$

$$EI_{T, AP_C-Spine} = 290$$

C-Spine	All Sites	AP C-Spine	LAT C-Spine	OBL C-Spine	OBL C-Spine 2
N	5490	1316	1267	707	700
Mean(DI _{ref})	-0.27	0.63	-0.46	-1.03	-1.02
SD(DI _{ref})	2.56	1.96	2.91	2.51	2.45
Skew(DI _{ref})	0.32	1.69	0.35	0.29	0.42
Kurtosis(DI _{ref})	0.10	5.42	-0.93	-0.79	-0.62
$EI_{ref,k,i}$	235.1	289	225	197	198

Are the following criteria met (@ view level)? $SD(DI_{ref,k}) < 2.5$ & Kurtosis($DI_{ref,k}$) > 0

Basically, it's a mess....
Have a bit of work to do before can set EI_T values for these views!

C-Spine	All Sites	AP C-Spine	LAT C-Spine	OBL C-Spine	OBL C-Spine 2
N	5490	1316	1267	707	700
Mean(DI _{ref})	-0.27	0.63	-0.46	-1.03	-1.02
$SD(DI_{ref})$	2.56	1.96	2.91	2.51	2.45
Skew(DI _{ref})	0.32	1.69	0.35	0.29	0.42
Kurtosis(DI _{ref})	0.10	5.42	-0.93	-0.79	-0.62
$EI_{ref,k,i}$	235.1	247	225	197	198

Variation between sites...

Variation between sites...

Variation between sites...

Techniques for site E1 ~4X higher than site B1!! – is E1 too high? Or is B1 too low?

Exam groups needing further investigation:

5 out of 17 exam groups:

Exam Group	N	Mean(DI _{ref})	SD(DI _{ref})	Skew(DI _{ref})	Kurtosis(DI _{ref})	EI _{T,k} *
C-Spine	5490	-0.27	2.56	0.32	0.10	
Abdomen	2402	-0.05	1.69	0.70	4.02	
Abdomen GI	152	1.07	2.14	0.54	0.73	250
Abdomen GU	501	-0.02	1.86	0.29	0.76	
Chest	15811	-2.06	1.69	1.59	8.06	
L/S Spine	9714	1.19	1.70	0.96	4.52	330
Pelvis & Hip	15994	1.16	2.34	1.06	2.88	
Ribs	2353	0.47	2.35	0.03	-0.38	
Shoulder	13543	0.71	2.62	0.31	0.17	
T-Spine	1431	0.40	2.57	0.30	-0.15	
Ankle & Foot	20941	1.55	2.15	0.15	0.56	360
Femur Knee Leg	38498	0.85	2.52	0.62	0.56	
Hand & Wrist	17368	3.55	2.16	-0.06	2.25	570
Humerus, Elbow & Forearm	5457	3.13	2.06	-0.33	1.76	510
Mandible & TMJ	78	-0.31	2.44	0.46	-0.45	
Nasal & Orbits	58	0.35	2.46	-0.35	0.36	270
Skull, Sinus & Facial	478	1.26	2.01	-0.43	0.86	330

(i.e. we still have some work to do....)

EI_T values established so far:

Exam Group	View(s)	N	SD(DI _{ref})	$EI_{T,k,i}$
Abdomen	All	2402	1.69	
Abdomen GI	All	152	2.14	250
Abdomen GU	All	501	1.86	
	PA CHEST PORTRAIT	2756	1.27	
	PA CHEST LANDSCAPE	5449	1.56	130
Chast	LORDOTIC CHEST	2		
Chest	LAT CHEST	7303	1.40	
	AP CHEST LANDSCAPE	136	2.40	190
	AP CHEST PORTRAIT	93		
L/S Spine	All	9714	1.70	330
	AP HIP	4142	1.84	
	INLET VIEW PELVIS	63	2.04	
Dalyis and Hin	AP PELVIS	6430	1.87	310
Pelvis and Hip	AP SI JOINTS	75	2.10	310
	LAT FROG	3311	2.44	
	OUTLET VIEW PELVIS	67	2.30	
	LAT T-SPINE	735	1.92	
	OBLI T-SPINE 2	1		180
T Cnino	LAT T-L SPINE	2		160
T-Spine	OBLI T-SPINE	2		
	AP T-SPINE	689	1.77	420
	AP T-L SPINE	2		420
Ankle & Foot	All	20941	2.15	360
Hand & Wrist	All	17368	2.16	570
Humerus, Elbow & Forearm	All	5457	2.06	510
Nasal & Orbits	All	58	2.46	270
Skull, Sinus & Facial	All	478	2.01	300

Next Steps

- Investigate the 5 exam groups flagged for further investigation
 - May require collecting additional data
- Provide final list of EI_T values to applications update EI_T values for initial NX station, then import settings to remaining NX stations
- Setting EI_T likely an iterative process, but we'd like do it as few times as possible...

Next Steps

 Set recommended action limits for our technologists using the SD in DI

Exam Group	View(s)	N	SD(DI _{ref})	$EI_{T,k,i}$
Abdomen	All	2402	1.69	
Abdomen Gl	All	152	2.14	250
Abdomen GU	All	501		
	PA CHEST PORTRAIT	2756	1.27	
	PA CHEST LANDSCAPE	5449	1.56	130
Chest	LORDOTIC CHEST	2		
CHEST	LAT CHEST	7303	1.40	
	AP CHEST LANDSCAPE	136	2.40	190
	AP CHEST PORTRAIT	93		
L/S Spine	All	9714	1.70	330
	AP HIP	4142	1.84	
	INLET VIEW PELVIS	63	2.04	
Pelvis and Hip	AP PELVIS	6430	1.87	310
retvis and mp	AP SI JOINTS	75	2.10	310
	LAT FROG	3311	2.44	
	OUTLET VIEW PELVIS	67	2.30	
	LAT T-SPINE	735	1.92	
	OBLI T-SPINE 2	1		180
T-Spine	LAT T-L SPINE	2		100
i - Spille	OBLI T-SPINE	2		
	AP T-SPINE	689	1.77	420
	AP T-L SPINE	2		420
Ankle & Foot	All	20941	2.15	360
Hand & Wrist	All	17368	2.16	570
Humerus, Elbow & Forearm	All	5457	2.06	510
Nasal & Orbits	All	58	2.46	270
Skull, Sinus & Facial	All	478	2.01	300

Weighted average for $SD(DI_{ref}) = 1.9$

Next Steps

- Set recommended action limits for our technologists using the SD in DI
 - Weighted average for $SD(DI_{ref}) = 1.9$

	DI	Action
> 2*SD	DI > 4	See fault tree Fig 7
		Log for possible review, tally
> 1*SD	2.1 < DI < 3.9	number of occurrences for
		periodic review
	-2.0 < DI < 2.0	
		Log for possible review, tally
< 1*SD	-3.9 < DI < 2.1	number of occurrences for
		periodic review
< 2*SD	DI < -4	See fault tree Fig 8

Might be too stringent as a starting point?

Especially if want to use single table for all exams/views

Next Steps

- Perform ongoing analysis of dose statistics and implement flag criteria to identify specific exams/views at individual sites for review using some combination of:
 - Mean(DI)
 - SD(DI)
 - Skew and Kurtosis?
- This requires a centralized (non-manual) method for collecting dose statistics.... (which we don't have yet)

Summary

- Standard deviation, skew, and kurtosis of distribution in DI_{ref} can be used to systematically determine:
 - When EI_T values can be derived from the mean(DI_{ref}) for a given exam or view
 - When the state of practice is highly varied and further investigation may be needed before appropriate EI_T values can be set
- Exact criteria for these metrics may differ depending on practice and vendor

Cleveland Clinic

Every life deserves world class care.

