Pediatric Nuclear Medicine: A Physicist's Perspective on Clinical Imaging

Nima Kasraie, PhD, MSc Clinical Imaging Medical Physicist Dept. of Radiology and Medical Imaging Children's Mercy

MAGNET

Disclosures

- Funding from GE
- Funding from NIH
- Funding from RSNA

	Brussels	Chicago	Sidney	Vancouver	Munich	Cincinnati	Paris	Boston	UK 1	UK 2
Exams	1300	1303	2259	3800	394	4013	2409	5719	1805	2340
Renal	50%	49%	43%	37%	57%	57%	29%	53%	90%	74%
Bone	20%	19%	22%	20%	6%	17%	44%	18%	4%	8%
Tumor-brain	5%	12%	15%	22%	24%	11%	7%	11%	3%	10%
GI	15%	15%	14%	17%	13%	8%	0%	6%	2%	3%
Heart-lung	10%	2%	6%	4%	0%	4%	20%	11%	1%	5%

Pediatric Nuclear Medicine Practice in 2005³

(Conway ,JJ)

The outlook Current and future capacity utilization

	Most common age group of our	Estimated Effective Dose (mSv)
	patients (years)	
PET study	5	4.1
Tc99m-MAG3	1	0.8
Tc99m-Sulphur Colloid (oral)	10	0.4
Tc99m-DTPA	5	0.1
Tc99m-Mebrofenin	10	2.1
I123-MIBG	10	1.9

able 2		
Adult Effective Doses for Va	rious CT Procedures	
Examination	Average Effective Dose (mSv)	Values Reported in Literature (mSv)
Head	2	0.9–4.0
Neck	3	
Chest	7	4.0-18.0
Chest for pulmonary embolism	15	13-40
Abdomen	8	3.5-25
Pelvis	6	3.3–10
Three-phase liver study	15	
Spine	6	1.5–10
Coronary angiography	16	5.0-32
Calcium scoring	3	1.0-12
Virtual colonoscopy	10	4.0-13.2

(Mettler FA,et al)

able 5			
Effective Doses for Adults from Various Nuclear N	Aedicine Examinations		
Examination*	Effective Dose (mSv)	Administered Activity (MBq) [†]	Effective Dose (mSv/MBq) [‡]
Brain (^{sam} Tc-HMPAO–exametazime)	6.9	740	0.0093
Brain (^{93m} Tc-ECD-Neurolite)	5.7	740	0.0077
Brain (18F-FDG)	14.1	740	0.019
Thyroid scan (sodium iodine 123)	1.9	25	0.075 (15% uptake)
Thyroid scan (samTc-pertechnetate)	4.8	370	0.013
Parathyroid scan (vamTc-sestamibi)	6.7	740	0.009
Cardiac stress-rest test (thallium 201 chloride)	40.7	185	0.22
Cardiac rest-stress test (99mTc-sestamibi 1-day protocol)	9.4	1100	0.0085 (0.0079 stress, 0.0090 rest)
Cardiac rest-stress test (99mTc-sestamibi 2-day protocol)	12.8	1500	0.0085 (0.0079 stress, 0.0090 rest)
Cardiac rest-stress test (Tc-tetrofosmin)	11.4	1500	0.0076
Cardiac ventriculography (99mTc-labeled red blood cells)	7.8	1110	0.007
Cardiac (18F-FDG)	14.1	740	0.019
Lung perfusion (^{som} Tc-MAA)	2.0	185	0.011
Lung ventilation (xenon 133)	0.5	740	0.00074
Lung ventilation (^{oom} Tc-DTPA)	0.2	1300 (40 actually inhaled)	0.0049
Liver-spleen (99mTc-sulfur colloid)	2.1	222	0.0094
Biliary tract (^{sam} Tc-disofenin)	3.1	185	0.017
Gastrointestinal bleeding (semTc-labeled red blood cells)	7.8	1110	0.007
Gastrointestinal emptying (semTc-labeled solids)	0.4	14.8	0.024
Renal (99mTc-DTPA)	1.8	370	0.0049
Renal (99mTc-MAG3)	2.6	370	0.007
Renal (^{99m} Tc-DMSA)	3.3	370	0.0088
Renal (^{99m} Tc-glucoheptonate)	2.0	370	0.0054
Bone (99mTc-MDP)	6.3	1110	0.0057
Gallium 67 citrate	15	150	0.100
Pentreotide (111In)	12	222	0.054
White blood cells (^{som} Tc)	8.1	740	0.011
White blood cells (111In)	6.7	18.5	0.360
Tumor (18F-FDG)	14.1	740	0.019

DMSA = dimercaptosuccinic acid, DTPA = diethylenetriaminepentaacetic acid, ECD = ethyl cysteinate dimer, "F = fluorine 18, FDG = fluorodeoxyglucose, HMPAO = hexamethylpropylenean xime, ¹¹¹h = indium 111, MAA = macroaggregated albumin, MAG3 = mercaptoacetlythiglycine, MDP = methylene diphosphonate, ^{som}T = technetium 99m.

[‡] From reference 74

(Mettler FA,et al)

Weight based dosing with 20% window

 CHILDREN'S MERCY HOSPITAL

 DATE EFFECTIVE
 03/19
 INDEX
 GENERAL MANUAL

 SUPERSEDES
 1/2009 - 8/2015, 8/16, 11/17
 APROVED

 Page
 1
 OF
 2
 REVIEWED/REVISED
 03/2019

- PRESCRIBED DOSE LIMIT RECOMMENDATIONS
 1. The following is a list of the routine dose limit recommendations for pediatric studies. These
 are based on package insert information or on recognized standard practices.
- Physicians may request higher (or lower) doses than normal if in his/her opinion the benefit of using this dose outweighs the risks involved.
- Each radiopharmaceutical was a package insert section titled "Dosage and Administration".
 Each radiopharmaceutical was a package insert section titled "Dosage and Administration". This section specifies a recommended dose and route of administration. Consult the package insert if questions arise regarding dose limits or for newly approved radiopharmaceuticale which are not litch.

Radionuclide	Chemical Form	Procedure	Range for Pediatric Dose	Recommend Dosage
Technetium-99m	Pertechnetate	G.I. Scan/Meckels	250 µCi-10mCi	0.05 mCi/kg
		Thyroid Scan	1-5 mCi	71 µCi/kg
		Cystogram	500 µCi-1 mCi	
Technetium-99m	DTPA	Renal Scan (G.F.R)	1 mCi	
	-	VP Shunt	1 mCi	
Technetium-99m	Sulfur Colloid	Gastric Emptying	250 µCi -1 mCi	350 µCi
	•	Liver / Spleen Scan	1 mCi -6mCi	86 µCi/kg
Technetium-99m	Filtered Sulfur Colloid	Lymphoscintigraphy	1 mCi in 0.1 ml for site	each injection
Technetium-99m	MAG3	Renal Scan	1-4 mCi	143 µCi/kg
Technetium-99m	MDP	Bone Scan	1-20 mCi	0.25 mCi/kg
Technetium-99m	Sestamibi	Myocardial-Rest	4-10 mCi	143 µCi/kg
		Myocardial-Stress	8-20 mCi	300 µCi/kg
Technetium-99m	Sestamibi	Parathyroid	5-25 mCi	360 µCi/kg
Technetium-99m	Choletec	Hepatobiliary	1-5 mCi	0.05 mCi/kg
Technetium-99m	(Ultra-Tag Kit)	G.I. Bleed	3-20 mCi	300 µCi/kg
Technetium-99m	Bicisate (Neurolite)	Brain SPECT	5-20 <u>mCi</u>	300 µCi/kg*
Technetium-99m	MAA	Lung Scan	400 uCi-3 mCi	0.03 mCi/kg**

Radionuclide	Chemical Form	Procedure	Range for Pediatric Dose	Recommend Dosage
Technetium-99m	HM-PAO (Ceretec)	White Cell Label	1-10 <u>mCi</u>	150 µCi/kg
Technetium-99m	"	Brain (CBF)	3-20 <u>mCi</u>	290 µCi/kg
lodine-123	Sodium lodide	Thyroid Uptake	15-300 <u>µCi</u>	5 µCi/kg
		Thyroid Ca WB	1-3 <u>mCi</u>	
lodine-123	MIBG	Brain/Adrenal Imaging	1-10 <u>mCi</u>	0.14 <u>mCi</u> /kg
Indium-111	Oxine	White Cell Label	75-500 μCi	10 µCi/kg
Indium-111	DTPA	Baclofen Shunt	50-500 µCi	7 µCi/kg
	"	CSF Shunt Patency	200 µCi into shunt	by MD
	"	Cisternogram	50-500 µCi	7 µCi/kg
Indium-111	Octreoscan	Tumor Imaging	500 µCi - 6 <u>mCi</u>	86 µCi /kg
Fluorine-18	FDG	Brain Imaging	1-10 mCi	0.1 mCi/kg
Fluorine-18	FDG	Body Imaging	1-10 <u>mCi</u>	0.10-0.14 <u>mCi</u> /kg
Gallium-68	Dotatate	Tumor Imaging	0.5?-5.4 mCi	54 µCi /kg
Gallium-67	Citrate	FUO	300 uCi-5 <u>mCi</u>	70 µCi /kg
		Tumor	500 uCi-10 mCi	140 µCi /kg

*Double the calculated <u>Neurolite</u> amount for duration of EEG Monitoring. **Lung dose and particle size parameters

Newborn 1 year 5 years 10 years 15 years > 70kg Rt to Lt Shunt 200 <u>µCi</u> 500 <u>uCi</u> 2.5 mCi 1 mCi 1.5 mCi 3 mCi 10-50 k 50-150 k 200 - 300 k 200-300 k 200-700k 200-700k <10 k particles Follow the new North American Guidelines for Pediatric Nuclear Medicine for high-quality images at low radiation dose.

2016 Update: North American Co

Redispharmace ettaal	Notes	Administered Addrity	Minimum Administered Activity	Maximum Administered Activity
131HMIBG	[A]	5.2 MBq/kg (0.14 mG/kg)	37 MBq (1.0 mCl)	370 MBq (10.0 mCi)
THE TEMOP	[4]	9.3 MBq/kg (0.25 mG/kg)	37 MBq (1.0 mCl)	
"FFDG	[A, 8]	Body: 3.7-5.2 MBq/kg (0.10-0.14 mCl/kg)	26.MBg (0.7 mCl)	
		Brain: 3.7 MBg/kg (0.10 mG/kg)	14 MBg (0.37 mC)	
P#TeDMSA	[A]	1.85 MBq/kg (0.05 mG/kg)	18.5 MBq (0.5 mG)	100 MBq (2.7 mG)
metewas3	[A, C] [A]	Without flow study: 3.7 MBq/kg (0.10 mQ/kg) With flow study: 5.55 MBq/kg (0.15 mQ/kg)	37 MBg (1.0 mCl)	148 MBq (4.0 mG)
**Tc:DA	[A, 0]	1.85 MBq/kg (0.05 mGj/kg)	18.5 MBq (0.5 mG)	
***Tc-MAA	[A]	If them used for ventilation: 2.59 MBq/kg (0.07 mG/kg)		
	(A)	No ***Tic ventilation study: 1.11 MBq/kg (0.03 mCi/kg)	14.8 MBq (0.4 mG)	
^{ver} Topertschnetate (Neckel diverticulum imaging)	[A]	1.85 MBq/kg (0.05 mGj/kg)	9.25 MBq (0.25 mG)	
"F-sodium fluoride	[A]	2.22 MBq/kg (0.06 mG/kg)	14 MBq (0.38 mC)	
**Tc (for cystography)	[E]	No weight-based dose	No mass than 37 MBq (1.0 mC	i) for each bladder filing cycle
^{ener} Tesulfur colloid (for ceal liquid gestric emptying)	(F)	No weight-based dose	9.25 MBq (0.25 mCi)	37 MBq (1.0 mC)
**Tesulfur colloid (for solid gestric emptying)	[F]	No weight-based dose	9.25 MBq (0.25 mG)	18.5 MBq (0.5 mG)
THETE: HINEMO (Canatac)/THETE:ECD (Neurolite) for brain perfector		11.1 MBq/kg (0.3 mG/kg)	185 MBq (5 mCl)	740 MBq (20 mG)
Tesestamibi (Cardiolita)/Testofosmin (Myoview) for myocandial perfusion (single scan or first of 2 scans, same day)		5.55 MBq/kg (0.15 mCj/kg)	74 MBq (2 mCi)	370 MBq (10 mG)
Tesestamibi (Cardiolita)/Tetetofosmin (Myeview) for myocandial perfusion (second of 2 scans, same day)		16.7 MBq/kg (0.45 mCl/kg)	222 M8q (6 mCl)	1110 MBq (30 mCi)
No ¹²³ I for thyroid imoging		0.28 MBq/lg (0.0075 mG)	1 MBq (0.027 mC)	11 MBq (0.3 mC)
***Te-pertachnetate for thyraid imaging		1.1 M8q/kg (0.03 mG/kg)	7 MBg (0.19 mCl)	93 MBq (2.5 mC)
**Fc-RBC for blood pool imoging		11.8 MBq/kg (0.32 mGj/kg)	74 MBq (2 mCi)	740 MBq (20 mG)
**TeWBC for infaction imaging		7.4 MBq/kg (0.2 mCi/kg)	74 MBq (2 mCi)	555 MBq (15 mG)
"Go-DOTATOC or "Go-DOTATE	[6]	2.7 MEq/kg (0.074 mCl/kg)	14 MBq (0.38 mG)	185 MBq (5 mCl)
WIRE: Do advector is interfed at a gatiebre on). Load patter may vary depending any for patient who weight must than 700g. It is nonversided that the maximum similation of to 70 times the resonancedod weight times demandened activity separated as King by a val- mention energy collection for 95-885.	patient populat ztivity octions 3/kg, for exec	ter, dozto of alfanta; osi fao patiti ingatoneti si datadi potodi; Alministro i a në të palot of ko pateri i ngjë (kg) ad të nora mesini engërbani abistit që, qpostentej i bati (310 Mkg) ko "1436 kojongga, "ko dinëstenit attë	tisty ney be eljectet when appaprise by order at and a billy. Some practitioner may decore to an a fee amone can of a low energy high-ecoloriter calle	the nodes: medicine par three: final maximum climitational activity exped notes for ^{the file} and sphermar solit of and a
ledities part towarm of son lowe compared activities of their approach or software per and only in low doors.	nt: fee to d	i sa Algler adalationel a tribu may le repoint le selectel potient. No mammedal	dan 2 gen de 20arman "Gacitate; boarma	e ^{or} lioe 21ste skodi be und my blespert
🕕 The SAMA Decepe Card 2014 weaks 2 administration of arthrapy may also be used.				
🔘 The low out of the daw corps should be constituted for smaller potents. Administrated ad	têy ney bile	isto accent potent mass and time and date on the FSI scenars. The SAMA Dacage Carl 3	1814 waatan Dadmitistrané astróny may dia ke wa	nd .
🔃 The odministrated activities assume that image data are extended at 7 min/image. The ou	hindren at	idy may be edized if inspectate an refraned at a longer time per inage.		

us Guide

() or a momenta association and a star of a second or a star of a second or a second or

(j) The admitted activity may be local separate weight a on the up of the dail.
(j) The admitted activity is based as the LANN format (and 2014 waters 12 dampe for

hadange tida. Sant M. Jean X. Jud at. Induse nantani Manatani Banz 201 Mark kanan Ganana Galika 1. Hel Mat 2011, 52 (2), 310 122.

Dosage Card (Version 5.7.2016)

Multiple of Baseline Activity

Weight	Class	Class	Class	Weight	Class	Class	Class
kg	А	В	С	kg	А	В	С
3	1	1	1	32	3.77	7.29	14.00
4	1.12	1.14	1.33	34	3.88	7.72	15.00
6	1.47	1.71	2.00	36	4.00	8.00	16.00
8	1.71	2.14	3.00	38	4.18	8.43	17.00
10	1.94	2.71	3.67	40	4.29	8.86	18.00
12	2.18	3.14	4.67	42	4.41	9.14	19.00
14	2.35	3.57	5.67	44	4.53	9.57	20.00
16	2.53	4.00	6.33	46	4.65	10.00	21.00
18	2.71	4.43	7.33	48	4.77	10.29	22.00
20	2.88	4.86	8.33	50	4.88	10.71	23.00
22	3.06	5.29	9.33	52-54	5.00	11.29	24.67
24	3.18	5.71	10.00	56-58	5.24	12.00	26.67
26	3.35	6.14	11.00	60-62	5.47	12.71	28.67
28	3.47	6.43	12.00	64-66	5.65	13.43	31.00
30	3.65	6.86	13.00	68	577	14.00	32 33

 $A[MBq]_{\rm Administered} = BaselineActivity \times Multiple$

Recommended Amounts in MBq

Radiopharmaceutical	Class	Baseline Activity (for calculation purposes only)	Minimum Recommended Activity ¹
		MBq	MBq
¹²³ I (Thyroid)	С	0.6	3
¹²³ I Amphetamine (Brain)	В	13.0	18
¹²³ I HIPPURAN (Abnormal renal function)	В	5.3	10
¹²³ I HIPPURAN (Normal renal function)	А	12.8	10
¹²³ I mIBG	В	28.0	37
¹³¹ I mIBG	В	5.6	35
¹⁸ F FDG-PET torso	В	25.9	26
¹⁸ F FDG-PET brain	В	14.0	14
¹⁸ F Sodium fluoride	В	10.5	14
⁶⁷ Ga Citrate	В	5.6	10
⁶⁸ Ga-labelled peptides	В	12.8	14
99mTc ALBUMIN (Cardiac)	В	56.0	80
^{99m} Tc COLLOID (Gastric Reflux)	В	2.8	10
^{99m} Tc COLLOID (Liver/Spleen)	В	5.6	15
^{99m} Tc COLLOID (Marrow)	В	21.0	20
99mTc DMSA	В	6.8	18.5
^{99m} Tc DTPA (Abnormal renal function)	В	14.0	20
^{99m} Tc DTPA (Normal renal function)	А	34.0	20
^{99m} Tc ECD	В	51.8	100
^{99m} Tc HMPAO (Brain)	В	51.8	100

^{99m} Tc MAA / Microspheres	В	5.6	10
^{99m} Tc MAG3	А	11.9	15
^{99m} Tc MDP	В	35.0	40
^{99m} Tc Pertechnetate (Cystography)	В	1.4	20
^{99m} Tc Pertechnetate (Ectopic Gastric Mucosa)	В	10.5	20
^{99m} Tc Pertechnetate (Cardiac First Pass)	В	35.0	80
^{99m} Tc Pertechnetate (Thyroid)	В	5.6	10
^{99m} Tc RBC (Blood Pool)	В	56.0	80
^{99m} Tc SestaMIBI/Tetrofosmin (Cancer seeking agent)	В	63.0	80
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac rest scan 2-day protocol min)	В	42.0	80
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac rest scan 2-day protocol max)	В	63.0	80
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac stress scan 2-day protocol min)	В	42.0	80
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac stress scan 2-day protocol max)	В	63.0	80
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac rest scan 1-day protocol)	В	28.0	80
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac stress scan 1-day protocol)	В	84.0	80
^{99m} Tc Spleen (Denatured RBC)	В	2.8	20
⁹⁹ Tc TECHNEGAS (Lung ventilation) ³	В	49.0	100

(Bielsa IR)

Immobilization

- Swaddling (any age)
 - Baby Blankets, Sheets,
 Positioning Sponges,
 Velcro, and Tape
- Feed before imaging (e.g. Renal MAG3)
- Sleep deprived CT commonly uses
- Favorite toy or blanket
- Safety straps

- Medication Assistance
 - Oral: Versed, Ativan,
 Benadryl, prescriptions
 for pain meds
 - Conscious Sedation:
 Nitrous Oxide, Fentanyl,
 Versed
 - Anesthesia: Propofal and Precedex (dexmedetomidine)

Renal MAG3 (Kidney c/Lasix)

Indications are different in pediatrics

- Commonly ordered for:
 - Duplicated systems
 - Hydronephrosis
 - UPJ/UVJ Obstruction
 - Horseshoe Kidney

Infant Swaddle (0-5m) Anesthesia (6m to 5-6yrs)

Non-sedate over 6yrs

Imaging variations

• Post Transplant (no Lasix, 30 min imaging)

Renal MAG3 Exam Prep

Infant Swaddle (0-6 months) NPO 4 hrs prior to exam IV catheter IV fluids- 15 mL/kg; 30 min infusion Urinary Catheter- typically 8Fr Feed immediately prior to imaging Swaddle Scan Darkened room, soft music, snoozellen

Non-sedate 6yrs and Older Oral Hydration – 16 oz water (240 mL) IV catheter No urinary catheter Pick out a MOVIE!!! Scan

Anesthesia (6 months – 6 years) NPO 6 hrs solids/milk; NPO 2 hrs for clear liquid IV catheter IV fluids- 15 mL/kg; 30 minute infusion Urinary catheter – typically 8Fr Anesthesia administered Scan Recovery

- Planar imaging remains most commonly performed NM procedure in peds
- Acquisition can be:
 - Static: ¹²³I-MIBG for neuroblastoma
 - Dynamic: ^{99m}Tc-MAG3 renal scan

MAG3 Renal - Hydronephrosis

MAG3 Renal - Transplant

123-I mIBG Imaging

SPECT fused with previous diagnostic CT

Bone Scan (WB and 3 Phase)

- Done very similar to adults: Metastatic Disease, Osteomyelitis, FUO, Pain
- Differences
 - Length of time to hold still approx 1 hour
 - Possible need for a urinary catheter
 - Osteosarcoma, Rhabdomysarcoma, Ewing's Sarcoma

- Spot imaging for WB under 12
 months
- SPECT/CT
 - Spine: PARs Defect,
 Fractures,
 Spondyolisthesis (slipping),
 AVN hips
 - Area requested by radiologist

Bone Imaging

Spot views WB for an infant

Whole body bone scan Same patient that demonstrated large mass on previous slide with mIBG

Why NM for peds?

- NM procedures are *extremely* safe
- Total mass and volume administered tracer is very small
- Therefore do not produce hemodynamic/ osmotic effects
- Below allergic trigger levels

Table 1.1 Con radiopharmaceu	nparison of mass ar ticals and contrast	nd volumes for certain agents. Example in a
1-year-old	Volume (mL)	Mass (mg)
99mTc-MDP	0.06	0.64
99mTc-DMSA	0.03	0.22
99mTc-MAG ₃	0.10	1.1
Gd-DTPA	2.0	940
Optiray 320	20	6,400

(Treves, p.2)

That being said, why are peds different?

- Lower renal function
- Lower GFR
- Faster washout of radioactive gases from the lungs
- Faster circulation times
- Faster lymphatic flow

TABLE 12.1. Normal glomerular filtration rate (GFR) for different ages

	GFR (mL/min/1.73 m ²)			
Age	Mean	Range (±2 SD)		
Premature	47	29-65		
2-8 days	38	26-60		
4-28 days	48	28-68		
35-95 days	58	30-86		
1-5.9 mo	77	41-103		
6-11.9 mo	103	49-157		
12-19 mo	127	63-191		
2-12 years	127	89-165		
Adult males	131	88-174		
Adult females	117	87-147		

(Treves, Ed.3 Table 10.1)

How are peds different?

- There are peds diseases that do not exist in adults.
 Examples:
 - Perthes disease: Common in 3-5yr
 - Meckel diverticulum is more frequent in children than in adults
- Brain metabolism in neonates is limited to basal ganglia and sensorimotor cortex

How are peds different?

- In some diseases, the location and morphology of the lesions differ during childhood. For example:
 - Bone fractures under 24 months are pandiaphyseal instead of lineal
 - Osteomyelitis has different sensitivity and distribution patterns in adults vs. peds
- More bone marrow activity in peds than adults → FDG or gallium uptake is different in kids

(Bielsa IR)

Different tracer distribution: FDG uptake in young child vs. adolescent vs. adult

- F-18 PET bone scan in a 14yr old female
- Pattern similar to ^{99m}Tc-MDP
- In pediatric patients, physeal uptake indicates skeletal immaturity

(Treves, p.36)

Other challenges

- Any conflicting imaging tests?
 - Example: Has patient been given radiographic contrast during past few days? (can produce shielding artifacts)
- Any medications that may interfere with NM study?
- Can little Johnny's grandma and family stay with him in the PET waiting room?

Physical challenges: i. Planar imaging

- Long acquisition times
 - Immobilization
- Higher sensitivity
 - More efficient use of data to reduce acquisition time
 - Minimize administered activity

Physical challenges: i. Planar imaging

- Challenges:
 - Small organs: optimize visualization → maximize spatial resolution
 - Dose: Age issue and latent stochastic effects

General approaches to reducing dose

- Appropriateness of the clinical use
- Most recent radiopharmaceutical dose guidelines

Pediatric Nuclear Medicine and its Development as a Specialty

Isabel Roca Bielsa

Pediatric Nuclear Medicine (PNM) offers to the pediatrician noninvasive procedures, with high clinical impact and low dosimetry. New techniques have been adapted to children, diminishing doses, always looking for less dosimetry, higher sensitivity and higher resolution images. PNM is and will remain a minority subspecially, but highly complex for general NM physicians due to the different diagnostics in children and due to the higher technical complexity of the examinations. General NM physicians have to be trained and regularly receive CME in this field.

Semin Nucl Med 47:102-109 © 2017 Elsevier Inc. All rights reserved.

a) Acquisition aspects of planar imaging

- Are your protocols most appropriate given the state of practice?
 - Example 1: A perfusion phase with rapid framing in ^{99m}Tc-MAG3 renal imaging may no longer be current
 - Example 2: Renal DMSA (we don't use anymore)

SETUP	Last Upde	ated: 2/20	/2019	
Protocol	Category	Last Revision Date	Last Reviewe Date	
Intrathecal Infusion (Baclofen Pump)	Other	5/1/2016	11/2/2018	
Leukocyte WBC Scan	Other 🚫	5/1/2016	5/1/2016	
<u>Liver Hemangioma</u>	GI	11/2/2018	11/2/2018	
Liver-Spleen	GI	5/1/2016	11/2/2018	
Lung Perfusion	Pulmonary	5/15/2018	5/15/2018	
Lymphoscintigraphy	Other	5/1/2016	11/2/2018	
Meckel's Scan	GI	4/1/2017	2/16/2018	
Milk Study	GI	10/1/2015	2/16/2018	
Myocardial Perfusion	Cardiovascular	7/6/2018	7/6/2018	
<u>OctreoScan</u>	Oncology	5/1/2016	2/27/2019	
Parathyroid Scan	Endocrine	9/14/2017	9/14/2017	
PET-CT Body	Oncology	8/1/2014	8/1/2014	
PET-CT Brain	CNS	8/1/2014	8/1/2014	
Renal Captopril Scan	GU	4/1/2017	2/27/2019	
Renal Cortical Imaging	GU	2/1/2017	2/27/2019	
Renal DMSA	gu 🚫	5/1/2016	2/27/2019	
Renal GFR	GU 🙂	4/1/2017	3/21/2018	
Renal Scan	GU 🕐	9/14/2017	9/14/2017	
Renal Transplant Scan	GU	5/1/2016	5/1/2016	
Salivagram	GI	3/1/2016	3/1/2016	
Salivary Gland	GI	10/1/2015	10/1/2015	
Thyroid Scan	Endocrine	5/1/2014	5/1/2016	

Protocol	Category	Last Revision Date	Last Reviewed Date
Bone Scan 3-Phase	Skeletal	1/17/2017	5/15/2018
<u>Bone Scan Whole</u> Body	Skeletal	1/17/2017	1/17/2017
Bone SPECT	Skeletal	5/1/2016	5/15/2018
Bone SPECT-CT	Skeletal	5/1/2016	5/15/2018
Brain SPECT (Ceretec)	CNS	5/1/2016	11/2/2018
Brain SPECT for Seizure	CNS	6/1/2016	7/6/2018
Cardiac MUGA	Cardiovascular	5/1/2016	4/3/2019
Cerebral Blood Flow (Brain Death)	CNS	5/1/2016	7/6/2018
Cisternogram	CNS	5/1/2016	7/6/2018
<u>CSF Shunt</u>	CNS	5/1/2016	7/6/2018
Cystography	GU	11/1/2015	5/15/2018
Gastric Emptying	GI	12/1/2016	2/16/2018
Gastric Emptying - Liquid	GI (10/1/2015	2/16/2018
GI Bleed Study	GI	9/14/2017	5/15/2018
Hepato for Atresia	GI	1/17/2017	3/21/2018
Hepato for Bile leak	GI	5/1/2016	3/21/2018
Hepatobiliary	GI 🤅	9/14/2017	3/21/2018
I-123 MIBG	Oncology	9/14/2017	9/1/2017
I-123 Thyroid Uptake	Endocrine	12/1/2015	12/1/2015
I-123 WB Thyroid CA	Endocrine	4/1/2017	12/4/2018

b) Instrumentation aspects of planar imaging

- 1. Access issues:
- To the patient: Minimizing camera head distance vs. adjustments for greater access for ancillary support apparatus
- Around the OR:
 - Mobile or handheld gamma cameras for intraoperative imaging
 - Example: Surgical removal of osteoid osteomas
 - ^{99m}Tc-MDP is administered
 - Camera is brought to the room

Mobile Gamma Cameras Market Will Account for Revenues Worth US\$ 75.2 Million By 2028

NEWS PROVIDED BY Future Market Insights → Sep 12, 2018, 10:30 ET SHARE THIS ARTICLE

VALLEY COTTAGE, New York, September 12, 2018 /PRNewswire/ --

Advancements in healthcare technology - particularly in the surgery category - have led to an increasing adoption of gamma cameras. Further, the numerous developments in radio nucleotides are anticipated to favour the adoption of solid state cameras and mobile gamma cameras. SPECT is currently the biggest application of gamma cameras given the low cost, large suite of radioisotopes, and expanded use cases. Having said this, PET is anticipated to witness fastest growth in terms of adoption, owing to the greater special resolution and sensitivity, brought about by the use of positron emitting radioisotope that provides more energy, contrast, and special resolution. These findings are presented in a new research study on the global mobile gamma cameras market by Future Market Insights (FMI).

(Logo: https://mma.prnewswire.com/media/677274/Future_Market_Insights_Logo.jpg)

According to FMI analysis, the high costs of PET as compared to SPECT are expected to be negated in the wake of development of high sensitivity and selective tracers. FMI predicts a growth rate of 4.8% for the mobile gamma cameras market during the 10 year period from 2018 to 2028. Revenue from the sales of mobile gamma cameras is estimated to reach US\$ 752 Mn by 2028 end, up from US\$ 472 Mn in 2018.

A more-portable handheld gamma camera is used to examine a patient.

Handheld USB-Gamma Camera "CrystalCam"

(Currently not available as a medical device in Europe.)

- 2. Collimation:
 - Choice should be determined on a task specific basis
 - Must balance spatial resolution with efficiency
 - Resolution : localization of abnormalities on a bone or renal scan
 - Sensitivity : hepatobiliary imaging for diagnosing biliary atresia

Parallel collimator resolution largely determines system resolution

(Cherry, p.225)

Parallel hole collimation

- The choice of collimation:
 - What is the energy of the emissions of the tracers you'll be using?

Parallel hole collimation

- The choice of collimation:
 - What is the energy of the emissions of the tracers you'll be using?
 - What about additional emissions?

Improved Quality of Pediatric ¹²³I-MIBG Images with Medium-Energy Collimators

Erin R. Snay, CNMT, S. Ted Treves, and Frederic H. Fahey

J Nucl Med Technol 2011; 39:100–104 DOI: 10.2967/jnmt.110.080309

Parallel hole collimation

- The choice of collimation:
 - Example:
 - ¹²³I used in thyroid imaging or for kids with suspected neuroblastoma
 - Primary emission is 159 keV → LEC is often used
 - However, 4 % of the photons emitted have higher energies

Energy (keV)	γ-rays per decay
159	0.828
248	0.0007
281	0.0008
346	0.0013
440	0.0043
505	0.0031
529	0.0138
539	0.0038
625	0.0008
688	0.0003
736	0.0006
784 (Snay, p.101)	0.0006

 γ -Ray Emissions from ¹²³I (4)

- Septal thickness in LECs usually has limited effectiveness in stopping these hi-E photons
- Result 1: Around 40 % of detected events in a ¹²³I study may result from the septal penetration of these hi-E photons
- Result 2: Sensitivity obeys inverse square law for LECs when imaging I-123! But for MECs the traditional equation holds:

$$m{g} pprox K^2 igg(rac{d}{l_{eff}} igg)^2 rac{d^2}{\left(d + t
ight)^2}$$
 (Nobde

(No b dependence)

		\frown		\frown	
	LEHS	LEHR	LEUHR	ME	HE
	Low-energy high-sensitivity	Low-energy high-resolution	Low-energy ultrahigh-resolution	Medium energy	High energy
Hole length (mm)	24	24	36	40	50
Hole diameter (mm)	2.5	1.1	1.1	2.9	3.4
Septal thickness (mm)	0.36	0.15	0.15	1.1	2
Sensitivity (cpm/µCi)	1,000	200	100	310	135
Collimator resolution @10 cm (mm)	14.6	6.4	4.6	10.8	12.6

(Treves, Fahey, p.624)

Conclusion: It may be more appropriate to utilize a MEC rather than a LEC for I-123, because:

- 1. Better image i.e. higher contrast, less noise
- 2. Increased sensitivity i.e. shorter scan times

Discovery NM630	Parallel Hole Collimators
-----------------	----------------------------------

DESCRIPTION	NAME	CATALOG NUMBER (a)	RECOM MENDED ISOTOPE	FIELD OF VIEW (cm) (b)	CALCULATED PENETRATION (%)	SYSTEM SENSITIVITY (cpm/µCi) @100 mm 3/8" / 5/8" Per Detector (c)	SYSTEM SENSITIVITY (cps/MBq) @100 mm 3/8" / 5/8" Per Detector (c)	SYSTEM RESOLUTION FWHM (mm) @100mm 3/8" / 5/8" (d)	TYPE OF HOLE	HOLE DIAM ETER (mm)	SEPTAL THICKNESS (mm)	HOLE LENGTH (mm)	WEIGHT (kg / lb) 1 pcs
Low Energy** Ultra-High Resolution	LEUHR	H2506TH	TI-201 / Tc99m Studies	54 × 40	0.3 (Tc-99m)	83 / N.A. (Tc-99m)	38 / N.A. (Tc-99m)	6.1 / N.A.	hex	1.22	0.15	38	80/176
Low Energy** High Resolution	LEHR	H2506TB	TI-201 / Tc99m Studies	54 × 40	0.3 (Tc-99m)	160 / 165 (Tc-99m)	72 / 74 (Tc-99m)	7.4 / 7.7	hex	1.5	0.2	35	60/132
Extended** Low Energy General Purpose	ELEGP	H2506TD	I-123 / Kr-81 Studies	54x 40	0.3 (l-123) 2.3 (Kr-81)	320 / 330 (Tc-99m) 224 / 245 (I-123)	144 / 148 (Tc-99m) 101 / 110 (I- 123)	10.3 / 10.6	hex	2.5	0.4	40	62/136
Medium Energy General Purpose	MEGP	H2506TC	Ga-67 / In-111 studies	54 x 40	2.0 (Ga-67)	144 / 150 (Ga-67)	65 / 67 (Ga-67)	9.4 / 9.8	hex	3.0	1.05	58	103 / 227
High Energy General Purpose	HEGP	H2506TE	I-131 studies	54 x 40	2.0 (1-131)	97 / 165 (I-131)	43 / 73 (I-131)	12.0 / 12.5	hex	4.0	1.8	66	131/289

My conclusion: It may be more appropriate to just test this all out on your system and see if switching to a MEC works for you:

- 1. "Still looks noisy"
- 2. We only use ME for Octreoscan ¹¹¹In

4yr old kiddo, ME improves sensitivity by a factor of 3

(Treves, Fahey, p.626)

- The choice of collimation:
 - How will you balance between spatial resolution and sensitivity?
 - Example 1: LEHR vs LEHS

	LEHS	LEHR	LEUHR	ME	HE
	Low-energy high-sensitivity	Low-energy high-resolution	Low-energy ultrahigh-resolution	Medium energy	High energy
Hole length (mm)	24	24	36	40	50
Hole diameter (mm)	2.5	1.1	1.1	2.9	3.4
Septal thickness (mm)	0.36	0.15	0.15	1.1	2
Sensitivity (cpm/µCi)	1,000	200	100	310	135
Collimator resolution @10 cm (mm)	14.6	6.4	4.6	10.8	12.6

- Here, 5-fold gain in sensitivity (compared to LEHR) can allow imaging time to be cut
- If spatial resolution is not of primary concern, the LEHS collimator may be a good choice.

Magnification collimation

Why magnification collimation

Pinhole collimation

- Examples:
 - In patients < 1yr with possible pyelonephritis, may need high-resolution image of renal cortex using ^{99m}Tc-DMSA to evaluate the extent of scarring
 - If wanting to discern which bone in the foot has enhanced ^{99m}Tc-MDP uptake

Notice efficiency deteriorates faster than R_{c} with b

DESCRIPTION	NAME (a)	CATALOG NUMBER	RECOM MENDED APPLI- CATION / ISOTOPE	FIELD OF VIEW (mm)	Weight (kg/lb)	Insert hole diameter (mm)	3/8" SYSTEM SENSITIVITY (cpm/μCi) @100 mm Per Detector (b)	3/8" SYSTEM SENSITIVITY (cps/MBq) @100 mm Per Detector (b)	3/8" SYSTEM RESOLUTION FWHM (mm) @100mm (c)
General Purpose Pin Hole (3 inserts)	GPPH	H2506TF	Thyroid / Tc99m,	200 diameter	98/216	2 4.45	43 200	19 90	3.8 6.5
			1120,1101			8	570	258	11.4
(Treves, p.3	Apertui 77)	res	M	*	-	h	2		
			2.0 mm		4.0 mm		6.0 mm		

- Moral of story: When decreasing aperture size, there is a trade off between col sensitivity (and therefore acquisition time) and spatial resolution
 - Notice however, reducing aperture size has bigger effect on g than on R_c

- Pros:
 - Excellent spatial resolution → good for small organs or babies
- Cons:
 - Magnification distortions → for bigger patients
 - g↓ if (θ or b)↑ (unlike converging collimators)

My conclusion: It may be more appropriate to just test this all out on your system and see if a Pinhole collimator works for your particular type of exam:

- We only use Pinholes for femoral hips and thyroids in newborns. We use the SPECT for other former pinhole usages (e.g. 3-phase bone scan)
- 2. "takes too long to position it"

c) Image processing aspects of planar imaging

- Adaptive filtering
 - The size and type of the filtering kernel is spatially modified depending on the local image content
 - Apply lots of smoothing to areas of uniform activity
 - Apply less smoothing to areas of varying spatial content such as those containing edges and fine detail

- Apparent noise level is reduced while preserving image sharpness
- Allows for reduction in the administered activity (i.e. absorbed dose) to patient
- Example 1: Apply adaptive filtering to dynamic ^{99m}Tc-MAG3 renal study

Reduction in Radiation Dose in Mercaptoacetyltriglycerine **Renography with Enhanced** Planar Processing¹

Radiology: Volume 261: Number 3—December 2011 • radiology.rsna.org

(Hsiao, p.909)

- Example 2: Apply Enhanced Planar Processing (EPP) to scintigraphic hepatobiliary studies in infants for the diagnosis of biliary atresia
- With EPP, clinically acceptable images may be produced with a reduction of 75 % of the minimum administered activity

Eur J Nucl Med Mol Imaging (2014) 41:2346–2353 DOI 10.1007/s00259-014-2860-1	
ORIGINAL ARTICLE	

Beyond current guidelines: reduction in minimum administered radiopharmaceutical activity with preserved diagnostic image quality in pediatric hepatobiliary scintigraphy

Frederic Fahey • Katherine Zukotynski • David Zurakowski • Robert Markelewicz • Anthony Falone • Marie Vitello • Xinhua Cao • Frederick Grant • Laura Drubach • A. Hans Vija • Manojeet Bhattacharya • Xinhong Ding • Zvi Bar-Sever • Michael Gelfand • S. Ted Treves

A 2-month old boy (4.5 kg) with hepatocellular dysfunction w/o (top) and w/ (bottom) EPP

(Fahey ref [5])

S. Ted Treves, MD,^{*,†} Anthony E. Falone, MS,[†] and Frederic H. Fahey, DSc[†]

Nuclear medicine is a unique and valuable method that contributes to the diagnosis and assessment of many diseases in children. Radiation exposures in children undergoing diagnostic nuclear medicine studies are low. Although in the past there has been a rather large variation of pediatric radiopharmaceutical administered activities, adhering to recent standards for pediatric radiopharmaceutical administered doses can help assure that the lowest administered activity are employed and that the diagnostic value of the studies is preserved. Radiation exposures in children can be reduced further by optimizing routine protocols, application of advanced image processing and potentially with the use of advanced imaging systems.

Semin Nucl Med 44:202-209 © 2014 Elsevier Inc. All rights reserved.

Using EPP to reduce imaging time while preserving diagnostic information. 3yr old boy Tc-MDP @3.7mCi..

Physical challenges: ii. SPECT

- A little bit more challenging than planar:
- 100 proj x 20 sec/proj = enough time for kiddo to move around
- Age group for sedation or general anaesthesia is between 1-5yr olds

Resolution-Sensitivity Tradeoff

- Use dual heads to improve sensitivity → reduce to 180 degree acquisition
- In peds, the highest spatial resolution is essential. Therefore:
 - body contour orbits
 - L-config for cardiac SPECT
 - Which collimator? LEHR or LEUHR?

	LEHS	LEHR	LEUHR	ME	HE
	Low-energy high-sensitivity	Low-energy high-resolution	Low-energy ultrahigh-resolution	Medium energy	High energy
Hole length (mm)	24	24	36	40	50
Hole diameter (mm)	2.5	1.1	1.1	2.9	3.4
Septal thickness (mm)	0.36	0.15	0.15	1.1	2
Sensitivity (cpm/µCi)	1,000	200	100	310	135
Collimator resolution @10 cm (mm)	14.6	6.4	4.6	10.8	12.6

In SPECT, objects are at a distance from the collimator, thus the difference in resolution is more striking, therefore using the LEUHR may be more appropriate.

Recon innovations to bring down administered activity or acquisition time

• Use OSEM (iterative recon) with *resolution recovery* to improve IQ

Bone SPECT using Tc-MDP

FBP with full counts

(Stansfield et al.)

OSEM with resolution recovery with half of the counts

Adopting recent technologies for peds?

• CZT det, Multiple pinhole collimation,...?

 Preclinical (i.e. small animal imaging) systems,...?

ORIGINAL RESEARCH

Open Access

Feasibility study of a novel general purpose CZT-based digital SPECT camera: initial clinical results

Elinor Goshen^{1,2*}⁽⁰⁾, Leonid Beilin³, Eli Stern³, Tal Kenig³, Ronen Goldkorn^{2,4} and Simona Ben-Haim^{1,5}

gmail.com Department of Nuclear Medicine, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel ²Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel Full list of author information is available at the end of the article

Abstract

Background: The performance of a prototype novel digital single-photon emission computed tomography (SPECT) camera with multiple pixelated CZT detectors and high sensitivity collimators (Digital SPECT; Valiance X12 prototype, Molecular Dynamics) was evaluated in various clinical settings. Images obtained in the prototype system were compared to images from an analog

camera fitted with high-resolution collimators. Clinical feasibility, image quality, and diagnostic performance of the prototype were evaluated in 36 SPECT studies in 35 patients including bone (n = 21), brain (n = 5), lung perfusion (n = 3), and parathyroid (n = 3) and one study each of sentinel node and labeled white blood cells. Images were graded on a scale of 1-4 for sharpness, contrast, overall quality, and diagnostic confidence

Results: Digital CZT SPECT provided a statistically significant improvement in sharpness and contrast in clinical cases (mean score of 379±061 vs. 326±050 and 332±029 vs. 334 ± 047 respectively, p < 0.001 for both). Overall image quality was slightly higher for the digital SPECT but not statistically significant (3.74 vs. 3.66).

Conclusion: CZT SPECT provided significantly improved image sharpness and contrast compared to the analog system in the clinical settings evaluated. Further studies will evaluate the diagnostic performance of the system in large patient cohorts in additional clinical settings.

Keywords: CZT, General purpose, SPECT, Clinical

Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

Karen Van Audenhaege,^{a)} Roel Van Holen, Stefaan Vandenberghe, and Christian Vanhove Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University-iMinds Medical IT, De Pintelaan 185 block B/S, Ghent B-9000, Belgium

Scott D. Metzler Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Stephen C. Moore

Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115

(Received 31 March 2015; revised 7 July 2015; accepted for publication 8 July 2015; published 24 July 2015)

Which one can we trust?

Multi-Wiper Multi-Well Wipe Counter

Captus 3000 Single-Well Wipe Counter

Wiper Well Cour

	wiper weil Counter											
	Facility: Children's Mercy Hospitals & Clinics								Т	sting Date:	04/21/14	
	Location: Kansas City, Missouri					Annual Calibration						
	Dept: Nuclear Medicine				The annual calibration with the facility Co-57 NIST rod source was							
	Sustan	l anation	Hat Lab			perform	med. All par	rameters te	sted were ac	ceptable. R	ferte	
	aysten	Location:	HOLED				additional o	omments at	the bottom	of this page.	\sim	
	Mar	ufacturer:	Laboratory	Technologie	es. Inc.		Well Ef	ficiency	Chi-Sa	EWHN	Results	١.
	Model 8	Serial #'s:	Multi-Wiper	/Multi-Well			Co-57	Tc-99m		1		1
	Detector Model	Serial #'s:	10130106			Well 1:	72.7%	67.4%	2.3	15.42%	Pass	1
	Softwar	e Version:	3.1.0			Well 2:	73.3%	67.4%	2.5	16.0%	Pass	- 1
	Constancy/Chi Squar	e Settings:	Co-57 Wind	low		Well 3:	73.3%	67.4%	2.7	16.7 <mark>0%</mark>	Pass	- 1
		Source:	Facility Co-	57 Rod		Well 4:	73.4%	67.4%	3.0	15.69%	Pass	- 1
		Half-Life:	271			Well 5:	73.3%	67.4%	1.2	16.03%	Pass	- 1
	Mar	nufacturer:	Cardinal			Well 6:	73.1%	67.4%	5.7	15.7%	Pass	- 1
		Serial No.:	1693-63-3			Well 7:	72.7%	67.4%	5.2	18.69%	Pass	- 1
	Caller	Activity:	0.1001			Well 8:	73.0%	67.4%	2.9	15.97%	Pass	1
	Callor	ation Date.	11/01/15			Well 10-	73,376	67.4%	5.1	15 844	Page	
						Average	73.1%	67.4%	3.6	16 255	Pass	1
				Syste	m Calculate	d Average:	73.4%	67.4%				/
						To-00m efficier	nov calculated	from Co-67 sta	indard results b	v system.	\sim \sim	
	System Calibration:	April 21,	2014, 10:18	Ba.m.							<u> </u>	
_		Well 1	Well 2	Well 3	Well 4	Well 5	Well 6	Well 7	Well 8	Well 9	Well 10	
	Gain:	520	440	524	512	512	504	524	512	512	512	
	High Voltage (V):	809	Z	ero Setting:	119	Low Level Detection Setting: 10						
	Co. 67 Effetteren											
	Co-o/ Eniciency	Woll 1	Well 2	Woll 2	Well 4	Well 5	Well C	Well 7	Well 9	Well 9	Well 10	
	Background	179	185	178	194	191	186	185	182	190	176	
	Count 1:	108226	110017	109916	107718	111431	109690	106063	109068	108393	111385	
	Count 2:	108324	110380	109678	108331	111357	109586	108930	110737	108469	110516	
	Count 3:	108381	110172	109878	108872	111257	109640	108795	110763	108846	110514	
	Count 4:	108445	110316	109893	108470	111209	109860	108811	110622	108639	110329	
	Count 5:	108361	110271	109903	108527	111278	109680	108810	110623	108428	110274	
	Average.	108347	110231	109854	108384	111306	109691	108282	110363	108555	110604	
	Measured on :	04/21/14	04/21/14	04/21/14	04/21/14	04/21/14	04/21/14	04/21/14	04/21/14	04/21/14	04/21/14	
	Calculated Activity (uCi):	0.0685	0.0685	0.0685	0.0685	0.0685	0.0685	0.0685	0.0685	0.0685	0.0685	
	Calculated Activity (dpm):	152110.7	152110.7	152110.7	152110.7	152110.7	152110.7	152110.7	152110.7	152110.7	152110.7	
	Efficiency for Co-57:	71,1%	72.3%	72.1%	71,1%	73.0%	72.0%	71,1%	72.4%	71.2%	72.6%	
	Time/chamber	1.47 minutes	for all chambe	rs for system (alculated effic	iency	13.176	12.176	13.0%	13.376	12.0%	
	EWHM:	15.42%	16.03%	16.70%	15.69%	16.03%	15.77%	18.69%	15.90%	16.40%	15.84%	
	Chi-Square:											
	(60 sec counts)	Well 1	Well 2	Well 3	Well 4	Well 5	Well 6	Well 7	Well 8	Well 9	Well 10	
	Count 1:	118852	118673	119003	119549	119243	118194	119268	119173	119090	119002	
	Count 2:	119380	119032	119203	119763	119675	118382	118864	119472	118264	119359	
	Count 3:	113240	113433	113261	120027	113636	110037	113203	113386	113246	118308	
	Count 4:	119353	119096	119772	119669	119436	118680	118305	119942	118850	119028	
	Average:	119277	119076	119311	119644	119510	118492	118951	119452	118814	118957	
	Stidley:	264.1	27.9.0	283.5	299.2	186.2	409.4	392.3	235.9		389.6	
	c.v.:	94476	0.23%	0.24%	0.25%	0.16%	0.35%	0.33%	0.25%	0.33%	0.33%	~
	chi-square.	2.3	2.5	2.7	3.0	1.2	5.7	5.2	2.9	5.1	5.1	1
	1.064 < value < 7.7 9:	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass)
												-

Well Counter and Uptake Probe

		Facility:	Children's	Mercy Hosp	itals & Clinics	Testing Date:	04/21/14
		Location:	Kansas Ci	ty, Missouri		All parame	ters tested
		Dept:	Nuclear M	edicine		were ac	ceptable.
	System	Location:			/	Results	: PASS
	Man	ufacturar	Capintee			Well	Probe
	Model &	Serial #'s:	Captus 20	00	System Ter	t Pass	Pass
	Detector Model	Sorial #'c'	20173		Efficiency Cs-13	7. 29%	
	Constancy/Chi Square	Settings:	wines		Enclency 03-10	d 29%	
	Source: Eacility Cs.137 Pencil			TI-201 efficienc	A6%		
	Halful ife: 10957 F			- Tor T ench	Tc-99m efficienc	y. 78%	
	Manufacturer: Isotopo Broducto			ducte	Co-5	7. 79%	
	man	Corial No :	1101 62 70	1	00-5	1. 10%	
			0.500	,			
	Calibra	Hon Date:	0.000				
Car III	Calibra	uon Date.	00/01/00				
			Cantue 2	000 Well			
			Captus 2				
	WIPE COUNTER chi square			Auto Calibration			
	Counting time (sec): 60			High Voltage ()	/). 1000		
0	Background: 338				Ga	in 29.67	
		Counts	Net Counts		Zero Offse	et: -0.84%	
		270800	270500		FWH	VI: 7.8	
		269900	269600		Constancy Deviatio	n: -0.80%	
		270200	269900				
		269800	269500				
		269900	269600				
	Average:	269820					
	Stddev:	408.7					
	c.v.;	0.15%					
	chi-square:	2.5					
BEST	1.064 <value<7.779;< td=""><td>Pass</td><td></td><td></td><td></td><td></td><td></td></value<7.779;<>	Pass					
	factor to get com:	1.0					
94 💚	Average CPM	269820.0					
	. Wordgo of M.						

How does one verify the numbers these machines provide us?

By reproducing them using theoretical models

Reconstruct the decay curve using 4 points

10 vials in total

SWC	SWC
104.9345	118
	12.45108
24.95928	25
	0.163155
87.04764	99
	13.73082
88.10758	87
	1.257074
50.10131	53
	5.785661
74.77385	80
	6.98928
27.30581	28
	2.542282
51.96546	53
	1.990815
27.29043	28
	2.600069
139.4404	144
	3.269896
73.28331	71
	3.115728

Question 1: Deviation from the theoretical model Question 2: Is there consistency

Question 3: What corrections are being used?

- 1. Decay correction
- 2. Body Surface Area normalization
- 3. Single exponential assumption (SEA) correction

Body Surface Area

 $GFR_{BSA} = (GFR_{raw})(1.73)/BSA$

Various calculations have been published to arrive at the BSA without direct measurement. In the following formulas, BSA is in m², W is weight in kg, and H is height in cm. The most widely used is the Du Bois formula^{[334][6]} $BSA = 0.007184 \times W^{0.425} \times H^{0.725}$ A commonly used and simple one is the Mosteller formula^[6] $BSA = \sqrt{W \times H}$ $BSA = \sqrt{W \times H}$

	Mosteller	Dubois	Haycock	_
GFR _{BSA} =	146.0151053	146.9350951	145.5466351	ml/min/1.73m ²
GFR _{BSA} =	69.18519795	71.27186856	68.45135989	ml/min/1.73m ²
GFR _{BSA} =	172.3267196	173.1222245	172.2168952	ml/min/1.73m ²
GFR _{BSA} =	126.8630861	129.8557583	125.4554834	ml/min/1.73m ²
GFR _{BSA} =	114.1409079	116.3411644	113.3772854	ml/min/1.73m ²
GFR _{BSA} =	99.62199733	97.66064125	100.5091335	ml/min/1.73m ²
GFR _{BSA} =	120.0329448	123.4692609	119.0963434	ml/min/1.73m ²
GFR _{BSA} =	117.4734264	118.0710967	117.450879	ml/min/1.73m ²
GFR _{BSA} =	97.88938817	100.0178082	97.33100167	ml/min/1.73m ²
GFR _{BSA} =	169.8862161	169.5152273	169.8822344	ml/min/1.73m ²
GFR _{BEA} =	91.1483237	92.22559425	90.56607868	ml/min/1.73m ²
- 1054		MWC		

Question 4: Is it even that big of a difference anyway?

What corrections are being used

- 1. Decay correction
- 2. Body Surface Area normalization
- 3. Single exponential assumption (SEA) correction

• "Plasma clearance has widely been pragmatically considered to be bi-exponential,"

• "...the early phase or exponential is considered **to represent diffusion** of the tracer between intra- and extravascular fluid volumes"

• "....the late phase reflects solely renal clearance".

• "...One-compartment characterization is the clinical workhorse for GFR measurement."

• "Only the late exponential is characterized"

 "GFR is systematically overestimated because of the absent data from the early compartment." "published corrections can be used to compensate for the missing earlycompartment data".

This overestimation can be corrected using various published corrections. The quadratic Bröchner-Mortensen and linear Chantler corrections (2 separate Chantler corrections exist) have been recommended (4). The Bröchner-Mortensen has been preferred (3). The corrections are as follows:

Bröchner-Mortensen Correction. In adults (16),

$$\label{eq:GFR_BM} \begin{split} GFR_{BM} &= (0.9908 \times GFR_{NON}) - (0.001218 \times (GFR_{NON})^2), \\ Eq. \ 7 \end{split}$$

and in children (17),

 $GFR_{BM} = (1.01 \times GFR_{NON}) - (0.0017 \times (GFR_{NON})^2), Eq. 8$

where GFR_{BM} is Bröchner-Mortensen–corrected GFR and GFR_{NON} is noncorrected GFR (BSA-normalized). *Chantler Correction.* In adults and children (*18*),

$$GFR_{CH} = 0.87 \times GFR_{NON},$$
 Eq. 9

	Mosteller	Dubois	Haycock	-
GFR _{BSA} =	146.0151053	146.9350951	145.5466351	ml/min/1.73m ²
GFR _{BSA} =	69.18519795	71.27186856	68.45135989	ml/min/1.73m ²
GFR _{BSA} =	172.3267196	173.1222245	172.2168952	ml/min/1.73m ²
GFR _{BSA} =	126.8630861	129.8557583	125.4554834	ml/min/1.73m ²
GFR _{BSA} =	114.1409079	116.3411644	113.3772854	ml/min/1.73m ²
GFR _{BSA} =	99.62199733	97.66064125	100.5091335	ml/min/1.73m ²
GFR _{BSA} =	120.0329448	123.4692609	119.0963434	ml/min/1.73m ²
GFR _{BSA} =	117.4734264	118.0710967	117.450879	ml/min/1.73m ²
GFR _{BSA} =	97.88938817	100.0178082	97.33100167	ml/min/1.73m ²
GFR _{BSA} =	169.8862161	169.5152273	169.8822344	ml/min/1.73m ²
GFR _{BSA} =	91.1483237	92.22559425	90.56607868	ml/min/1.73m ²

GFR _{BM} =	118.7035	ml/min/1.73m²
GFR _{BM} =	61.73984	ml/min/1.73m²
GFR _{BM} =	123.5659	ml/min/1.73m²
GFR _{BM} =	100.7715	ml/min/1.73m²
GFR _{BM} =	93.13447	ml/min/1.73m²
GFR _{BM} =	86.61738	ml/min/1.73m²
GFR _{BM} =	96.73983	ml/min/1.73m²
GFR _{BM} =	95.18815	ml/min/1.73m ²
GFR _{BM} =	82.57832	ml/min/1.73m²
GFR _{BM} =	133.1702	ml/min/1.73m²
GFR _{BM} =	80.19059	ml/min/1.73m²

Question 5: Will these corrections make a difference anyway?

GUIDELINES FOR GLOMERULAR FILTRATION RATE DETERMINATION IN CHILDREN

Amy Piepsz¹, Paula Colarinha², Isky Gordon³, Klaus Hahn⁴, Pierre Olivier⁵, Rune Sixt⁶, Jeannette van Velzen⁷

CHU St Pierre, Brussels, Belgium¹, Instituto Portugaés de Oncologia, Lisbon, Portugal¹; Great Ormond Street Hospital for Children, London, UK¹; Dept. of Nuclear Medicine, University of Manich, Germany¹; CHU Nancy, France¹; The Queen Silvia Children's Hospital, Göteborg, Sweden⁸, Iiaison person from ARPES.

Under the Auspices of the Paediatric Committee of the European Association of Nuclear Medicine

I Purpose

The purpose of this guideline is to offer to the nuclear medicine team a framework, which could prove helpful in daily practice. This guideline contains information related to the procedure and indications of measurement of glomerular filtration rate using blood samples in children.

The present document is inspired by the report of the Radionuclides in Nephrourology Committee on renal clearance ⁽¹⁾, but contains information more specifically adapted to the European practice e.g. the choice of tracer.

This guideline summarises the views of the Paediatric Committee of the European Association of Nuclear medicine. It should be taken in the context of "good practice" of nuclear medicine and local regulation.

II Background information and definitions

Retal clearance of a substance can occur by two processes: glomerular filtration or tubular secretion. O vesses, glomerular filtration rate (GFR) is probably the most representative parameter of renal for econstant under standard conditions, and, as opposed to tubular secretion, is indepertion is constant under standard conditions of GFR. Question 6: Why are we even using 4 time points?

"Some investigators consider that a better determination of the slope can be obtained by using more blood samples within the 2-4-hr time interval."

GUDELINES FOR GLOMERULAR FILTRATION RATE DETERMINATION IN CHILDREN

Amy Piepsz¹, Paula Colarinha², Isky Gordon³, Klaus Hahn⁴, Pierre Olivier⁵, Rune Sixt⁶, Jeannette van Velzen²

CHU SP Herre, Brussels, Belgium¹, Institute Portugués de Oncologia, Lisboa, Portugal², Great Ormond Street Hospital for Children, London, UK¹, Depto el Nuclear Medicine, University of Manich, Germany⁴, CHU Nancy, France⁴, The Queen Slivà Children's Hospital, Gioteborg, Sweder⁴, lisaison person from ARPES.

Under the Auspices of the Paediatric Committee of the European Association of Nuclear Medicine

I Purpose

The purpose of this guideline is to offer to the nuclear medicine team a framework, which could prove helpful in duity practice. This guideline contains information related to the procedure and indications of measurement of glomerular filtration rate using blood samples in children. The present document is inspired by the report of the Radionuclides in Nephrourology Committee on renal

The present document is inspired by the report of the Radionucides in Nephrourology Committee on renal clearance⁽⁰⁾, but contains information more specifically adapted to the European practice e.g. the choice of tracer.

This guideline summarises the views of the Paediatric Committee of the European Association of Nuclear medicine. It should be taken in the context of "good practice" of nuclear medicine and local regulation.

II Background information and definitions

Renal clearance of a substance can occur by two processes: glomerular filtration or tubular secretion. C evenue, glomerular filtration rate (GFR) is probably the most representative parameter of renal furer constant under standard conditions, and, as opposed to tubular secretion, is indeperconstant under stendard conditions, of GFR. "However, it has been shown that no significant benefit is gained by adding a third intermediate blood sample."

Conclusions: There is a statistical difference between GFR values measured using 4 blood samples compared to 3 blood samples, while there is no statistical difference between measured GFR values using the same 4 vs. only 2 blood samples, provided the timing interval between the two points is prolonged. There is hence no significant loss of accuracy in going from 4 blood samples to two for determining renal clearance, while no significant benefit is gained by using three blood samples instead of four.

Figure-1: Comparison of absolute difference of GFR values obtained using 4, 3 and 2 blood samples

60min, 90min, 120min, 180min

• Using 4 blood draws

120min, 240min

• Using 2 blood draws

Clinical outcome?

Benefit 1 of a 2 point GFR: Happier patients

Clinical outcome?

Benefit 2 of a 2 point GFR: Higher throughput

References I borrowed images from

- 1. Pediatric Nuclear Medicine and Molecular Imaging. <u>Treves ST</u>. 4th Ed. Springer 2014.
- 2. Physics in Nuclear Medicine. Cherry SR. 4th Ed. Elsevier. 2012
- 3. Improved Quality of Pediatric ¹²³I-MIBG Images with Medium Energy Collimators. <u>Snay</u> <u>ER</u>. JNMT. Vol 39. No2. June 2011
- 4. Reduction in Radiation Dose in Mercaptoacetyltriglycerine Renography with Enhanced Planar Processing. <u>Hsiao EM</u>. Radiology. Vol 261. No3. Dec 2011
- 5. Beyond current guidelines: reduction in minimum administered radiopharmaceutical activity with preserved diagnostic image quality in pediatric hepatobiliary scintigraphy. Fahey F, et al. Eur J Nucl Med Mol Imaging. Vol 41. 2014
- Pediatric 99mTc-MDP bone SPECT with ordered subset expectation maximization iterative reconstruction with isotropic 3D resolution recovery. <u>Stansfield EC, et al.</u> Radiology. 2010 Dec;257(3):793-801.
- 7. *Quo vadis pediatric nuclear medicine*. <u>Conway JJ</u>. Semin Nucl Med. 2007; 37:242–248.
- Pediatric Nuclear Medicine and Radiation Dose. <u>Treves ST</u>. Semin Nucl Med 44:202-209. 2014
- Effective doses in radiology and diagnostic nuclear medicine: a catalog. <u>Mettler FA</u>. Radiology. 2008 Jul;248(1):254-63
- 10. Pediatric Nuclear Medicine and its Development as a Specialty. <u>Bielsa IR</u>. Semin Nucl Med 47:102-109. 2017

