Bringing Automation to Proton Clinics

Chang Chang, PhD DABR
California Protons Cancer Therapy Center
San Diego, CA

Overview

• Proton plan checks
 • Passive: MU, compensator and other checks
 • PBS: robustness, max/min MU/spot, range shifter consistency, layer/volume repainting
• Automated collision detection
 • Gantry model
 • Auto correction on snout extension
 • Challenges
• PBS Commissioning
• Some new developments

MU, App/Comp Check

• Ensure compensators meet clinical protocols, e.g. ridge height
• Review aperture boundary within snout opening
• Ensure manufacturability by checking min and max height
• Avoid “islands” that might break off
• Center-specific beam data
• Calculate MU!
Compensator Visualization

XiO TPS
ProCureMU

Compensator Fabrication

Additional plan check items

- Field name reflects geometry, i.e. G3307905AO
- Max and Min MU/Spot for PBS
- Beam/couch angle within the usable range
- Range Shifter is identical for all beams
- Dose grid less than 3mm

* (Limited to plan DICOM files only)
MU determination

- XIO allows user to specify a scaling factor “Weight”
- Dose to water phantom is obtained either from a QA plan, or by calculating the Track File Factor
- Output factor is measured at commissioning, relative to the calibration condition, R16/M10 for ProCure
- Depth dependent Field Size Factor is measured at commissioning
- $MU = \text{Weight} \times \text{TFF} \times \text{FSF}$
- Measurement is only needed for small fields, esp off-axis

MU Second Check

- Total/Fl x Daily Dose
- Calculates daily dose from MU and delivery scheme
- Compare with Rx Daily dose
 - NOT total dose
 - NOT frac

Additional plan check items

- Field name reflects geometry, i.e. G330T90SAO
- Max and Min MU/Spot for PBS
- Beam/couch angle within the useable range
- Range Shifter is identical for all beams
- Dose grid less than 3mm
- CT: slice thickness, calibration table, and association with plan
- Beam/couch angle within the useable range
- Dose grid extent encompasses target, OAR and beam
- Dose calculation engine (Monte Carlo or Analytic)
- Layer repainting is properly set for lung and liver cases
- Specific contours exist for each treatment site
- Air gap is reasonable

Shikui Tang, private communications
Automated plan robustness

- Plan with $r \times N$ fractions (r is the # of volume repainting, N is the actual # of fractions)
- Deliver each fields r times each day
 - Standard workflow
 - Tedious and time consuming to send each field r times

Auto robustness evaluation

Stacked volumetric repainting

- Plan with $r \times N$ fractions (r is the # of volume repainting, N is the actual # of fractions)
- Deliver each fields r times each day
 - Standard workflow
 - Tedious and time consuming to send each field r times
PBS Spot Size and Location

- Measurements
 - ISO, ISO+15cm, ISO-15cm
 - 18 energies

- Spot divergence
 - $\sigma_{x,y}(z)$
 - Potentially $\sigma_{x,y,\theta}(x,y,z)$

- SAD/Spot location
 - $\mu_{x,y}(z)$

PBS spot size/location analysis

ML prostate plan

Xiandong Zhao, private communications