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Number
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Quality Reporting
Disparities of care

Practice quality improvement

Safety

requires all patients from participating practices

Population Health-Registry
Regional incidence

Environmental influences

requires all patients regionally

Decision Support
Outcome/Toxicity prediction

Individualized treatments

Data-driven quality control

Treatment adaptation

large random sample of patients

Research
Biological questions

Clinical trials

statistically

sufficient 

patients

High granularity

High cost/patient

Low granularity

Low cost/patient

Big Data

Opportunity

Levels of Big Data

Needs and Challenges for Big Data in Radiation Oncology.

McNutt TR, Moore KL, Quon H.

International journal of radiation oncology, biology, physics. 2016; 95(3):909-915.

Data for quality control

• Indications
– Diagnosis, staging and 

histology

– Guidelines

• Radiation
– Prescription

– Regions of interest

– Dosimetry

– Beam delivery (logs)

– Imaging
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• Patient outcomes
– Clinician assessed toxicity

– Patient reported

– Disease response

Measures for quality control

• Dose goals (DVH)

• Dose measurement (IMRT QA, diode)

• Delivery complexity (IMRT modulation)

• Region of interest features (volume)

• Patient localization (imaging and couch)

• Patient toxicity (modeled and measured)

• …
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Fixed Facts

Outcomes

Clinical VariablesQuality Check

Data and 
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Patient 

Selection

Learning health system – Quality Check

What does it mean to be data driven?

• Protocols are population based

• Each patient is different

• Data can provide personalization within 

population based guidelines

• Prediction models and refined cohort 

selection provide patient-specific guidelines
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Anomaly Detection Quality Metric Predictions Patient Outcome Predictions

Knowledge 

Database

Feature Extraction

Statistical Models Machine Learning Artificial Intelligence

Guideline 

Adherence

Diagnosis Consult Simulation Contour
Treatment 
Planning

Chart 
Review

Treatment 
Delivery

On 
Treatment 

Visit

Contour 

Integrity
Plan Quality

Uncommon 

Rx

Adverse 

Outcome

Delivery 

Fault

Radiotherapy workflow

Safety and quality 

check examples

Learning health system to support quality and safety
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Potential data driven checks

• Region of interest anomalies

• Dose goals

• NTCP, TCP

• Treatment plan complexity

• Rx appropriateness
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Contour integrity
Veeraj Shah
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Data-driven Contiguousness

OVH: serial vs parallel

For parallel organs, OAR2 is more easily spared.

For serial organs, OAR1 is more easily spared.

OAR2

OAR1Target
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Mandible

vs

PTV_7000

pt: 300
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Mandible

vs

PTV_7000

pt: 822
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Mandible

vs

PTV_7000

pt: 295
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Mandible

vs

PTV_7000

pt: 258
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Mandible

vs

PTV_7000

pt: 234

Shape-dose relationship for 

radiation plan quality

Decisions:
• Plan quality assessment

• Automated planning
• IMRT objective selection

• Dosimetric trade-offs

Shape relationship Dose predictionDB of prior patients

parotids
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For a selected Organ at Risk and %V, find the 

lowest dose achieved from all patients whose 

%V is closer to the selected target volume?
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Predicted Achievable Dose Objectives
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Significantly lower in both OPs: cord4mm (~6 Gy),

brainstem (~7.4 Gy) and contra-lateral parotid (~7%)

15 pts: OAR Sparing among CP,OP1 and OP2

Binbin Wu

Figure 3: A secondary study on Radiation Therapy Oncology Group (RTOG) 0126 quantified excess risk of

late rectal complication due to sub-optimal IMRT planning. (a) Data-driven prediction of normal tissue

complication probability (NTCP) vs. the actual treated plans’ NTCP. (b) Frequency histogram showed a mean

excess risk of 4.7%±3.9%.
Courtesy of Kevin Moore

NTCP quality using KBP
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Physics new start check
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Patient Name:   

MRN:

DOB:

Gender:

Attending:

Diagnosis:

Stage:

July 15, 2019 23

Radiation prescription safety

191 Brain AND 

Pathology of 

Glioblastoma

191 Brain AND

Pathology of 

Anaplastic

Astrocytoma

when uncommon RxAlert!
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Radiation prescription safety

Importance of model update
Minuro Nakatsugawa

July 15, 2019 26

Importance of model update
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How to stay safe and maintain quality?

• Data is not always the highest quality – must make sure methods/models 

don’t assume it is

• Data does not contain all knowledge.  Existing knowledge is often absent

– If all patients in database meet a dose goal, then there is no knowledge outside 

of that goal contained in the data.

– Be wary of situations where you may be outside of the available data bounds

• Data gets old

– How to keep models current?

– Do we want to be treated the way patients were treated a 2 decades ago?

– The Rx anomaly may be using an old Rx that has been superseded.
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Summary

• Quality follows a system of checks

• Predefined checklists and scorecards provide 

population level quality

• Data driven methods can personalize the measures of 

quality

• The learning health system concept offers the 

opportunity to include data driven quality systems into 

clinical practice
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Manufacturing Quality

• Do things the same way every time

• Control of process

• Testing samples

• Feedback from measures

• But each patient is different
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Toxicity Prevalence
(P. Lakshminarayanan)
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Dysphagia<1

Xerostomia<2

4 yrs

2 yrs

Mucositis<2

Taste(Dysgeusia))<1
Weight Loss<1

Xerostomia

<2
<1

<3
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Which patient will do better?
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63-year-old man with T3 N2b M0 Stage IVA Squamous cell 

carcinoma, NOS of the Malignant neoplasm of larynx
69-year-old man with Stage Squamous cell carcinoma, NOS 

of the Right Malignant neoplasm of tonsil


