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Levels of Big Data @) JOHNS HOPKINS
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Data for quality control
« Indications  Patient outcomes
— Diagnosis, staging and — Clinician assessed toxicity
histology — Patient reported
— Guidelines — Disease response
* Radiation
— Prescription
— Regions of interest
— Dosimetry
— Beam delivery (logs)
— Imaging
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Measures for quality control

» Dose goals (DVH)

* Dose measurement (IMRT QA, diode)
 Delivery complexity (IMRT modulation)

* Region of interest features (volume)

« Patient localization (imaging and couch)
« Patient toxicity (modeled and measured)
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Learning health system — Quality Check @) JOHNS HOPKINS
Quality Checkj Clinical Variables
Fixed Facts
--------------------------- OUtcOmES = = = = = = = =>
- Checklists Time

- Protocol %
- Complete
Feature {

Extraction 1 | g Personalized
LAE ) thresholds
7 Facts, Variables  — -

Outcomes Anomaly Detection

Selection : B yachine Learning D
Activity Result
Presentation
Patient Data and Data Feedback
Selection Knowledge Base

(Facts, Outcomes)

What does it mean to be data driven?

» Protocols are population based
» Each patient is different

» Data can provide personalization within
population based guidelines

* Prediction models and refined cohort
selection provide patient-specific guidelines
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Learning health system to support quality and safety INS HOPKINS

Knowledge
Database
Feature Extraction
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Potential data driven checks = "

* Region of interest anomalies
» Dose goals

NTCP, TCP

» Treatment plan complexity

* Rx appropriateness
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OVH: serial vs parallel
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For parallel organs, OAR2 is more easily spared.
For serial organs, OARI1 is more easily spared.
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Shape-dose relationship for @SOS
radiation plan quality
Shape relationship DB of prior patients Dose prediction
parotids
PTV “usmxsmz;;;ﬂ(g;smism
<
For a selected Organ at Risk and %V, find the L i qeisions:
lowest dose achieved from all patients whose . Aum;a,edypl;,;m}‘;g

%V is closer to the selected target volume? +  IMRT objective selection
*  Dosimetric trade-offs
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Predicted Achievable Dose Objectives @SOS
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15 pts: OAR Sparing among CP,0P1 and OP2 & S0

Table 6. Summary of resulis for the QAR in ihe ihree sets of plans.
GAR Endpoint |_CP_| OP1 | oP2 Wilcoxon p val
Ave | Avg | CPuOP1 | CPyiOP:
395 387 ~0.0001 =0.0001 07
o 079 1 051
ETE T BT 085
05 o3 058
3 EX CED 03 08
53| 45 | a3 | =ewoe1 | =e.0oe1 S
53 | 533 | o1 [T 057 051
535 [ a1 | 54 1 09 055
ipsi-Tateral Doree | 622 | 27 | 82 CEY E) W5
beachial plexus
contra-lateral Do 584 3944 | 5953 LR o84 086
bractal plexus
oral mucosa V(665 Gy) | 376 395 A0 LX) 074 053
ipsiclateral D 3| 257 | 20 032 047 T
D s [ s [ 2 52 543 T
CF = chimeal plan OPT = first-around OV

final OVH-assisted plan
ignificantly lower in both OPs: cord4dmm (~6 Gy),
brainstem (~7.4 Gy) and contra-lateral parotid (~7%)

Binbin Wu

NTCP quality using KBP @) JorS HOPRINS
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Figure 3: A secondary study on Radiation Therapy Oncology Group (RTOG) 0126 quantified excess risk of
late rectal complication due to sub-optimal IMRT planning. (a) Data-driven prediction of normal tissue
complication probability (NTCP) vs. the actual treated plans’ NTCP. (b) Frequency histogram showed a mean
excess risk of 4.7%£3.9%.

Courtesy of Kevin Moore
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Physics new start check @
Patient Name: Gender:
MRN: Attending:
DOB: Diagnosis:
Stage:
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Radiation prescription safety
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Radiation prescription safety
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Importance of model update

Minuro Nakatsugawa

Tatie : Patent Characieishs.
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Importance of model update

Methad A Yearly update
2007-'08 [10
2007-10 ‘11
2007-11

2007-"14 15
Method B: condition-based update
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Method C: no update
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How to stay safe and maintain quality? =" -

Data is not always the highest quality — must make sure methods/models
don’tassume it is

Data does not contain all knowledge. Existing knowledge is often absent

— If all patients in database meet a dose goal, then there is no knowledge outside
of that goal contained in the data.

— Be wary of situations where you may be outside of the available data bounds
Data gets old

— How to keep models current?

— Do we want to be treated the way patients were treated a 2 decades ago?

— The Rx anomaly may be using an old Rx that has been superseded.
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Summary arm

Quality follows a system of checks

Predefined checklists and scorecards provide
population level quality

Data driven methods can personalize the measures of
quality

The learning health system concept offers the
opportunity to include data driven quality systems into
clinical practice
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Thank You
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Do things the same way every time

Control of process
Testing samples

* Feedback from measures

Toxicity Prevalence

(P. Lakshminarayanan)

But each patient is different
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Which patient will do better? @™

69-year-old man with Stage Squamous cell carcinoma, NOS  63-year-old man with T3 N2b MO Stage IVA Squamous cell
of the Right Malignant neoplasm of tonsil cinoma, the Malignant ncoplasm of larynx
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