Dose Mapping and Accumulation for HDR GYN Applications

Jamema Swamidas PhD
Associate Professor and Medical Physicist
Tata Memorial Centre
Mumbai
India

Wednesday 17/7/2019 8.50-9.30 AM
SAM: Practical Medical Physics

Deformable Image Registration for Dose Mapping and Dose Accumulation: Techniques and Challenges
Overview

• Problem
 • Current practice
 • Limitations

• Solution: Deformable Image Registration Algorithms?
 • Challenges

• Dose accumulation
 • Literature review
 • Lessons learnt

• Clinical practice – Examples from our hospital.

• Take Home
Management of Carcinoma of Uterine Cervix

- CTV_{HR} dose of $\geq 85\text{Gy}_{\alpha/\beta = 10} (D_{90})$ EQD2

- EBRT (3DCRT/IMRT/ VMAT) + BT (2D radiographs/CT/MR)

Cibula D et al, Radiother Oncol 2018
Dose Accumulation of BT + EBRT

• Fraction size

7Gy / fraction - weekly

2Gy/ fraction - daily

• Dose Gradient

Brachytherapy DVH

External beam DVH

ICRU 89
Current Practice and Limitations

• Simple addition of biologically equivalent doses
 • LQ model (a/b = 10 for target, 3 for OARs)

Limitations:

• **BT**: Does not take into account the spatial location of the hot spot (Worst case scenario).
• **EBRT** – Assumption (Homogeneous dose)
 • IMRT / VMAT
 • SIB (Nodes close to BT region)
 • MLB
 • Parametrial boost.

Uncertainty in dose estimation?

Picture courtesy: K Tanderup, Denmark
Dose effect relationship

- Linking of dose to OARs toxicities
 - **Rectum**: $E_{D2}\text{cm}^3_2 \leq 65 \text{ Gy}_{\alpha/\beta} = 3$
 - **Bladder**: $E_{D2}\text{cm}^3_2 \leq 80 \text{ Gy}_{\alpha/\beta} = 3$
 - **Sigmoid**: No dose effect established so far!
 - **Bowel**: 45-50 Gy, Dose effect likely to become established for diarrhoea.

Picture courtesy: Prof R Poetter. MUW, Vienna
To reduce the uncertainty of dose accumulation in EBRT and BT, especially for OARs, so that, an accurate dose response relationship could be established.
Do we have a solution?

- Deformable Image Registration
 - Gaining momentum in EBRT
 - Contour mapping,
 - Adaptive Radiotherapy...
 - Dose accumulation - EBRT
 - Planned Vs Delivered dose
 - Dose of the Day

- Prostate & HN

- Gyn cancers : EBRT + BT ?

DIR - More of a Problem than a solution!

Large deformations - Sliding, content, shape

Applicator, Vaginal pack

Tumour Regression

Lack of mass conservation

Algorithms aim for simple deformations, contour propagation

Picture courtesy: ICRU 89
DIR products - Which algorithm?

- **Velocity Medical Solutions**
 - Multi-modality demons
 - Multi-resolution modified b-spline
 - Structure guided

- **MIM Software Inc.**
 - Intensity-based free-form.
 - Hybrid

- **Ray Search**
 - Morfeus
 - Anaconda

- **Mirada**
 - Optical Flow

- **DIR ART (MATLAB, need CERR)**

- **3D slicer**

- **DIR open source ITK**
 - Implemented in C++

AAPM TG 132

Deformable Registration

- Geometry (Thin Plate Spline)
- Anatomic Features / Boundaries / Artificial Landmarks
- Hybrid
- Image Voxel

Intensity (B spline, Demons)

Deformable Dose accumulation

Energy Transfer

Interpolation

Direct Voxel Tracking

COM

IJ Chetty & M Rosu-Bubulac
Sem in Rad Oncol, 2019
Issues with Intensity based Algorithms

KO Noe, PhD Dissertation, Aarhus University, Denmark

Rigid

Does not work well

- Complex deformations.
- Multi-Modality
- Image Artifacts
- Low Contrast
- Content

Applicator cap is mistaken as bladder wall

J Swamidas et al, Radiother Oncol 2015

Issues with feature based algorithms

Lacks in modeling discontinuities at the interface of sliding organs (bladder, cervix-uterus, rectum-sigmoid...)

Use of a single set of regularization parameters to register all structures simultaneously.

Flexibility can be prioritized between organs, not sufficient to model the very complexity of the deformations.

Structure wise registration with vector field integration (SW+VF)

• Designed for Cervix-Uterus, Bladder and Rectum-Sigmoid.

• Uses independent registration of each structure, allowing to naturally model sliding deformations.

• Two types of features were segmented: tube-like features such as vessels and ligaments, and sheet-like features such as muscles.

• Achieved the best results - 3.5 mm for the anatomical correctness.

• Dosimetric validation
• Clinical Applicability

Osorio et al, Med Phys 2015
Which DIR algorithm for bladder?

Residual Distance Error
• Synthetic Bladder
 • 0.7 mm
• Porcine Bladder and patients
 • 3.7 mm

• The efficiency and accuracy of TPS-RPM-LTP indicate that it is a practical and promising tool for bladder dose summation.

• Present evaluation do NOT demonstrate that the current algorithm is sufficiently accurate for dose accumulation!

Wognum et al 2014, Chen H et al PMB 2016
DIR for Rectum and Sigmoid

• **Rectum mask** (Tetrahedra) – include shape information - Bent tube or cylinder with variable content.

• **Physiological Characteristics** (Stretching of the muscles which elongates with the rectal filling).

• **Focus on the wall** – not the content.

• **Most Algorithms were tested for** BT not EBRT + BT.

• Tubular
• Twist
• Non linear elastic FEM.
• Self Surface interaction.

DIR in the presence of applicator and vaginal pack

- In multi fractionated BT – may be Yes!!
- In EBRT +BT – How do we get point-point correspondence?

Teo et al, Radiother Oncol 2015
Zhen et al, PMB 2015
Deformable Dose Accumulation – Literature review

EBRT + BT

BT1 + BT2
In Brachytherapy, the accuracy required at the walls is high, as the dose distribution is governed by inverse square law that leads to high dose gradient.
Validation

- **Hollow organs – Rectum, Bladder**
- **Non Hollow organs - Target**
- **Dice Similarity Coefficient**
 - Not suitable for Hollow organs
 - Focusses on the content not the wall.
 - In rectum and bladder, walls are clinically relevent.
 - Not suitable for BT- Dose gradient is high.
- **Surface Distance Error**
 - Suitable for Hollow organs, not for target.
 - Provides information about the distance between the structure surfaces.
 - Does not measure voxel-to-voxel agreements.

Clinical Practice - Role of Registration

& tips to minimize the uncertainty of dose summation of EBRT and BT

EBRT
- GTV Contour mapping
dMRI to pCT *(Rigid)*
- Bladder filling & Flat couch (manual)
- Maintain Uniform Dose in BT region
- Not always possible to maintain uniform dose in BT region during EBRT
 - SIB
 - MLB
 - Parametrial boost

BT
- CTV$_{HR}$ Contour mapping
 - BT1 MRI to BT2 CT
 - Applicator based **Rigid**

- Applicator reconstruction
 - CT to MRI
 - Applicator based **Rigid**

Only Rigid as of now
Uniform Dose in BT region during EBRT & to avoid hot spots

BT region Dmax < 46.35 Gy

External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer

EMBRACE II protocol
Attention: Organ walls for spatial Location of hotspots

Hot spots not in OARs

Hot spots in Bladder wall
Needle Reconstruction – Rigid Registration

CT - axial MRI Axial

CT - Coronal MRI- Coronal

Ti Needles in 1.5T MRI

CT- Sagittal MRI- Sagittal
Applicator based Rigid registration in Brachytherapy

- Good matching of bones
- Mismatch of applicator and target
- Good alignment of target as the anatomy moves with the applicator in brachytherapy.
Conclusion

• Deformable dose accumulation of EBRT and BT is associated with wide range of uncertainties, current generation of algorithms are not yet robust enough to handle complexities.

• **Direct addition** of doses provides a reasonable estimate of the actual doses received by the target, bladder and rectum except in MLB, SIB, also sigmoid and bowel?

• For contour mapping and applicator reconstruction in BT, **rigid registration based on applicator geometry** provides good accuracy.

• “Adding EBRT and BT **without deformation is a good approximation**, as DIR algorithms may cause additional uncertainties“ – ICRU 89, holds good.
Acknowledgements: GEC ESTRO BraPhyQs

Christian Kirisits
Austria

Kari Tanderup
Denmark

Frank Andre Siebert
Germany

Taran Hellebust
Norway

Marisol Bebrandere
Belgium

Reena ph,
Subhajit Panda,
Kishore Joshi

My colleagues at
Tata Memorial Centre,
Mumbai, India