Significant Standards Related to MR Safety

Michael C. Steckner, PhD, MBA
Canon Medical Research USA, Inc., Mayfield Village, OH

Disclosures
- Employee of Canon Medical Research USA, Inc
- Consult for LivaNova, Axonics

Objectives
- An introduction to the "alphabet soup" of standards
- Understand how MR vendors use standards
- Awareness of how standards are developed

- This talk mentions 13 standards (2 ISO, 1 IEC, 6 ASTM, 4 NEMA/MITA).
 - Unless you plan testing, I don't think you need ANY of these
 - Labels derived from these stds should explain enough (if not, call them)

- Note: unless otherwise specifically noted, descriptions of processes are typically IEC/ISO methods
A Brief Introduction

➢ Member of IEC 60601-2-33 MT40 committee for 15 years
➢ Convenor of IEC 62464 (MT52) 4 years
➢ NEMA/MITA MR technical committee chair for 6 years, member of tech committee for 18+ (?) yrs
➢ Co-convenor of ISO 1510974 JWG for 9 years (active implants in MRI)

Alphabet Soup

➢ Some standards development organizations (SDOs)
 ▶ International:
 ➢ IEC: International Electrotechnical Commission
 ➢ ISO: International Standards Organization
 ➢ ASTM International (formerly American Society for Testing and Materials)
 ▶ National:
 ➢ NEMA/MITA: National Electrical Manufacturers Association / Medical Imaging and Technology Alliance
 ▶ Other key terms:
 ➢ JWG: Joint Working Group (in this context, ISO and IEC working together)
 ➢ IFU: Instructions For Use (manuals, documents etc that come with scanner)
 ➢ MT: Maintenance Team

Can you define “Safety”?

➢ ISO 14971 – Medical devices – Application of risk management to medical devices
 ➢ Safety: freedom from unacceptable risk,
 ➢ Risk: combination of the probability of occurrence of harm and the severity of that harm,
 ➢ Harm: physical injury or damage to the health of people, or damage to property or the environment.
 ➢ You cannot be perfectly safe. ISO 14971 helps determine acceptable probability levels
 ➢ FDA holds medical device vendors to certain safety levels
 ➢ FDA does not regulate the practice of medicine. MDs practice risk/benefit management with patients, can use devices “off-label” at higher risk level
Do we understand the word "standards"?

➢ Two types of standards:
 ➢ Measurement
 ➢ The science of metrology. The recently retired “kilogram” block “Le Grand K”
 ➢ Documentary (definition from NIST)
 ➢ “written agreements containing technical specifications or other precise criteria that may contain rules, guidelines, or definitions of characteristics. Standards ensure that materials, products, personnel qualifications, processes, and services are: adequate for their purpose, compatible and/or interchangeable, if necessary; ensure public health and safety; protect the environment; and/or improve economic performance.” (NISTIR 7614, The ABC’s of Standards Activities).

➢ This presentation about documentary standards
 ➢ But any measurements done on calibrated equipment, traced to references

How Vendors use Standards

➢ Vendors develop safe products based on codified rules experts (and experience) have shown to be appropriate
➢ Vendors make claims to regulators (e.g. FDA) about products based on known requirements, test methods
➢ Regulators familiar with the standards (usually), simplifies their work
 ➢ e.g. FDA maintains a website of “recognized” consensus standards, but will consider other stds (and different editions) but more questions, scrutiny
 ➢ The vendor documentation burden lower because methods known
➢ Note: Regulators authorize marketing etc product claims. Anything on our “label”, e.g. manual, other documents, stickers, markings etc.
 ➢ Working for a vendor I MUST NOT support “off-label” use of medical devices. But I can talk about the science.

A few remarks about standards usage (MR+implants)

➢ We are ALL learning workflows, usage. Early tests, labels not optimal
➢ Interpretation may vary between vendors, including those who wrote
➢ With regards to labeling, I have seen:
 ➢ Technically accurate, but impossible for MRI user to practically follow
 ➢ Unclear, too long, complex
 ➢ Incomplete
 ➢ We are making all-out efforts to fix standards, improve labeling clarity
➢ A caveat about labels, in defense of regulators
 ➢ Not all regulators approving MRI labeling are MRI experts
 ➢ There may exist a clinical need so they may permit “special” labels
 ➢ Once a label approved, other vendors may attempt to copy
 ➢ Regulators stop further approvals once issues realized

FDA = Friendly Device Agency ☺
How Standards are Developed?

➢ Slowly...
 ➢ by committee (an international group speaking many languages),
 ➢ by significant consensus,
 ➢ a “patchwork quilt” developed over many editions,
 ➢ by a rotating committee membership,
 ➢ Reviewed on a multi-year cycle (e.g. MITA; 5 years)

➢ New stds started by “NWIP” (New Work Item Proposal)
 ➢ All key development stages have international votes
 ➢ Voted on by national technical advisory groups (e.g. I am an accredited member of the US delegation)

The most important MR safety std IEC 60601-2-33

➢ Title: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis
 ➢ Substantially a diagnostic imaging safety doc
 ➢ “Basic safety and essential performance” is a key and complicated expression that defines the focus of std. Out of scope for this presentation

➢ It covers (partial list):
 ➢ B0, SAR, Gradient exposure requirements
 ➢ Acoustic noise outputs
 ➢ The list of required information to release (e.g. gauss line plots)

➢ I believe all MR vendors follow the standard
 ➢ The NEMA/MITA safety stds document how various measurements done

NEMA/MITA Safety Standards (1)

➢ Three (fourth “in press”) standards related to safety:
 ➢ MS-4 Acoustic Noise Measurement Procedure for Diagnostic Magnetic Resonance Imaging Devices
 ➢ MGAN (max gradient noise), MCAN (max clinical seq noise)
 ➢ Undergoing major revision to consider MR worker safety (e.g. at bore opening), latest generation of big gradients
 ➢ MS-8 Characterization of the Specific Absorption Rate for Magnetic Resonance Imaging Systems (whole body)
 ➢ Completed major revision a couple of years ago for 3T, large bore systems
NEMA/MITA Safety Standards (2)

➢ MS-10 Determination of Local Specific Absorption Rate (SAR) in Diagnostic Magnetic Resonance Imaging
 ➢ Not considered useful today. Scheduled for total rewrite after MS-4
➢ MS-14 Characterization of RF Coil Heating in Magnetic Resonance Imaging Systems
 ➢ New, to publish later this summer
 ➢ Motivated by FDA request to improve clarity of IEC general standard on regular practices to ensure RF coils do not over-heat, injure patient

ASTM International Standards (1)

➢ Gratefully acknowledge input from Terry Woods, PhD (FDA) on status
➢ Five standards, an additional new one in progress:
 ➢ F2052 Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment
 ➢ Status: Interlaboratory study to determine precision and bias statement that is a required part of ASTM stds

ASTM International Standards (2)

 ➢ Status: Major revision to include 3T, excluding calorimetry over entire phantom, focus on local SAR. Complete 2019
➢ F2213 Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment
 ➢ Status: Additional methods added in 2017. Interlab study being designed, prep work for next revision
➢ F2503 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment
 ➢ Status: Update with optional list of parameters that could be included. Regularize and unify the presentation of information. Pub 2019
ASTM International Standards (3)

➢ WK58852 Standard Guide for Assessing the Safety of non-implanted Medical Equipment in the MR Environment
 ➢ Assessment of medical equipment (passive and active) that does not go in the bore of the scanner.
 ➢ A guide, not a test method.
 ➢ How to address projectile hazard, functioning of the device and device interference with MR images.
 ➢ Likely a very simple first edition. Pub 2020

ISO/IEC TS 10974 (1)

➢ Title: Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device
➢ A joint initiative (JWG) between active implant (ISO), MR vendors (IEC)
➢ Develop tests to confirm implant characteristics in MRI
➢ Tests support correct MR Conditional labels/instructions
➢ Almost NO tests occur in an MR scanner. Bench tests more accurate, test one field at a time. Supports claims across all MR vendor systems
➢ “TS” Technical Specification, not a std (yet). A way to develop, test ideas. Based on two editions of TS, standard now in development
➢ Do NOT confuse with new CMS payment for scanning MR Unsafe pacemakers, based on extensive literature reporting successful scanning WHEN BACKED UP WITH IMMEDIATELY AVAILABLE EMERGENCY RESPONSE STAFF

ISO/IEC TS 10974 (2)

Figure 2 — Relationship between MR scanner output fields (RF, gradient, B0) and hazards (test method clause numbers in parentheses)
Where do I get these standards?

- $0
 - https://www.nema.org/
 - MRI stds free for pdf download, after you create a free account

- $$
 - https://www.astm.org/

- $$$$$
 - https://www.iso.org/store.html
 - https://webstore.iec.ch/
 - Shop other national stds organizations. May be a lower price
 - Many different “versions” (e.g. redline etc) price different
 - NOTE: some stds exist in special national variants

For over 100 years, the Canon Medical Systems “Made for Life” philosophy prevails as our ongoing commitment to humanity. Generations of trusted people creates a legacy of medical innovation and service that continues to evolve as we do. By engaging the brilliant minds of many we continue to set the benchmarks because we believe quality of life should be a given, not the exception.