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Outline of Talk

• A Shallow Introduction to Deep Learning (DL)

• DL Dose / Imaging Time Reduction in CT 

• DL Dose / Imaging Time Reduction in PET

• Image Reconstruction and Processing Dose / 

Imaging Time Reduction in SPECT

• DL Dose / Imaging Time Reduction in Cardiac 

SPECT

• Summary 

AI, Machine & Deep Learning in Perspective

Deep 
Learning

Representation 
Learning

Machine 
Learning

Artificial
Intelligence

Adapted From:
Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016
And
Gabriel Chartrand, et al Deep Learning: A Primer for Radiologists. RadioGraphics, 
2017

Artifical Intelligence (AI): Colloquially, the term "artificial 
intelligence" is applied when a machine mimics "cognitive" 
functions that humans associate with other human minds, such as 
"learning" and "problem solving".

Machine Learning (ML): A machine learning algorithm is an 
algorithm that is able to learn from data. Computers trained without 
explicit programing.

Representational Learning (RL): Computers learn features by which 
to classify the data. 

Deep Learning (DL): Type of RL where the learned features are 
hierarchical.

C. Lindsay, U Mass Med School

Venn Diagram
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Computational Problem Solving

Solution Loop
• Problem Understanding
• Codified Conditions (Rules)
• Evaluation & Error Analysis 

Disadvantages

• Hard problems are not trivial

• Solution likely a long list of 
complex rules

• Hard to maintain

C. Lindsay, U Mass Med School

Computational Learning Approach 

Similarities

• Problem Understanding Required

• Evaluation & Error Analysis 

Differences

• Adaptive Rules

• Data Mutable Rules

Intuition

• Program Output        Results

• M.L. Output         Program

C. Lindsay, U Mass Med School

Classifying M.L. Methods & Types 

Data/Input Types

• Supervised (inductive) learning 
–Training data includes desired outputs 

•Unsupervised learning 
–Training data does not include desired outputs 

–Find hidden structure in data 

•Semi-supervised learning 
–Training data includes a few desired outputs 

Supervised Learning

C. Lindsay, U Mass Med School
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Expanded ML Diagram

Training
• Divide Data into Train, Validation & Test (e.g., 

60/20/20) or do cross-validation
• Train Data - used to fit the model each forward and 

backward propagation 
• Validation Data - provide an evaluation of model fit 

while tuning model hyperparameters 
• Epoch is a complete exhaustion of Train and 

Validation Data
• Test Data - provide an unbiased evaluation of a final 

model fit 

ML Model
Training 

Data

Validation 
Data

Evaluate 
Error 

Metric

Optimize 
Model 
Params

Error
• Lower = in general better, stopping is 

application dependent
• Ideally Test error = Validation error (then 

likely good generalization)
• Too much training can result in overfitting
• Too little can result in underfitting

C. Lindsay, U Mass Med School

Test Data

Artificial Neural Networks  (ANN)

What is it?
• ANN models are loosely based on biological neurons 

• Artificial neuron may have multiple Input and output

• Neuron body acts as signal integrator & activation function

• Data is propagated from 1 or more neurons to others

• A Net may have multiple layers

C. Lindsay, U Mass Med School

C. Lindsay, U Mass Med School
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What is Deep Learning?

• Typically a CNN with multiple layers

• Apply many layers of CNNs

• Only visible layers are 1st & last

• This model shows a feed-forward net

• Each Model Update modifies the Kernel 
weights

Back 
Propagation

C. Lindsay, U Mass Med School

DL Networks are Intensely Data Hungary

• Large datasets with labels are difficult to obtain in medical imaging

• What size is needed depends on nature and complexity of task 

(segmentation may need more training data than denoising). 

• Augmentation of the data available by flipping, rotation, 

translation, zooming, skewing, etc can sometimes be used. Also 

different noise realizations and divide slices into patches.

• Transfer learning has also been used where a network trained for 

one application on a large dataset is retasked to another purpose, 

and then trained on a small dataset relevant to the new task.

C. Lindsay, U Mass Med School

Deep Learning Algorithms

• Encoder/Decoders

• Denoising Autoencoders

C. Lindsay, U Mass Med School
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DL Dose / Imaging Time Reduction in CT 
• The success of DL in other areas inspired a number of investigators to 

investigate its usage in reconstruction and denoising low-dose CT 

studies.

• Excellent results have been observed for DL post-reconstruction 

denoising in comparison to iterative reconstruction and other post-

processing methods visually and using the RMSE and SSIM to full dose.

• Example: Chen et al, TMI 36 (12) 2524-2535, 2017 – LDCT = ¼ HDCT

Modeling System Spatial Resolution in Iterative 

Reconstruction for Reduced Dose / Time

• SPECT Myocardial Perfusion Imaging a number of investigators 

have found that modeling resolution can be used to reduce dose / 

time by 2 to 4 fold by various metrics

– Ali, et. al., JNC 2009

– Bateman, et. al., JNC 2009

– DePuey, et.al., JNC 2012

– Zafrir, et. al., JNC 2013

– Zoccarato, et. al. JNC 2014

• Similar results were observed in pediatric SPECT imaging

– Sheehy, et.al., Radiol 2009

– Stansfield, et. al., Radiol 2010

Investigation of Lowering Activity / Imaging 

Time in Cardiac SPECT - Perfusion

• Create lower-count studies from full-count list-mode studies by 

sampling with desired probability of keeping count. 

• Select 190 of studies read clinically as normal and appear to have 

uniform LV distributions when reconstructed with all corrections 

(attenuation, scatter, resolution, body and respiratory motion). 

• Create hybrid studies from these with range of defections of 

variation in size, contrast, and location based of what observed 

clinically.1

• Perform ROC studies using total perfusion deficit score (TPD) of 

QPS which depends of defect severity and extent to select 

reconstruction parameters (smoothing and # of iter) using 130 of 

studies with matching processing polar map data base for 30 males 

and second for 30 females.
• 1. Svane B. Polar presentation of coronary angiography and Thallium-201 single photon emission 

computed tomography. PhD Thesis. Stockholm; 1990
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Investigation of Lowering Activity / Imaging 

Time in Cardiac SPECT - Perfusion

Ramon, AJ et al, J Nucl Card, 2018

1. AUC OSEM–AC-SC-RC 

> FBP 

2. AUC OSEM–AC-SC-RC 

at 12.5% = FBP full-dose

3. AUC OSEM–SC-RC is 

lower but closer to AUC 

OSEM–AC-SC-RC 

Investigation of Lowering Activity / Imaging 

Time in Cardiac SPECT - Perfusion

• For 4 Readers ( 2 MD and 2 Physicists) 

evaluating these studies we obtained.

• OSEM Full-Dose and 25% not statistically 

significantly different

Recon Method Ave AUC SD AUC

FBP Full-Dose 0.73 0.03

OSEM Full-Dose 0.89 0.03

OSEM 25% Dose 0.87 0.03

Pretorius PH, et al, J Nucl Card, Epub 2019

Male Pat

AC Map

FBP

OSEM Full

OSEM 25%

FBP

OSEM Full

OSEM 25%

Investigation of Lowering Activity / Imaging 

Time in Cardiac SPECT - Perfusion

Pretorius PH, et al, J Nucl Card, Epub 2019
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Investigation of Lowering Activity / Imaging 

Time in Cardiac SPECT - Perfusion
Female Pat

AC Map

FBP

OSEM Full

OSEM 25%

FBP

OSEM Full

OSEM 25%

Pretorius PH, et al, J Nucl Card, Epub 2019

3D Convolutional auto-encoders (3D-CAE) for denoising of 

low-dose SPECT-MPI images

Low dose volume:

    x0
Î» mxmxm

Conv. layer 
+ ReLu

• Structure based on chain of layers:1,2

– Convolutional layers (stacked encoders) 

• Local feature extractors

• Suppress noise and artifacts from images

– Deconvolutional layers (stacked decoders)1

• Recover image structures lost during previous convolutions 

• Symmetry with encoding layers (recover image of same size)

• Non-linearity: ReLu(x) = max(0,x)

Conv. layer 
+ ReLu

Deconv. Layer
+ ReLu

Stacked encoders Stacked decoders

Predicted full dose volume:

Encoded
image
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Wl and bl: weight and biases for layer l
x0 : input low dose image
xl-1: feature map from previous layer

Wd and bd: weight and biases for layer l
vd-1: feature map from previous layer

    x0
= s (y),  where s :» mxmxm ® » mxmxm

-Low dose volume:     x0
Î» mxmxm

-Full dose volume:    y Î» mxmxm

Noise reduction model:

-CAE models     so that:
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f

f (x
0
) - y

2

2
 f

1 – Mao et al., 2016

2 – Chen et al., 2017

Deconv. Layer
+ ReLu

Ramon, AJ et al, Proceed 2018 IEEE NSS + MIC

Experimental framework

• CAE structure (for training) and parameter selection

– Patch based training (3D patches):

• Extracted from heart ROI of size 42x42x21 voxel

• Patch size =  21x21x21 voxel. Stride = 7 voxel

– Convolutional auto-encoder structure:

• Filter shape: 3x3x3 voxel (stride 1, no padding) 1,2

• Conv. layers (2) + Deconv. layers (2)

– Implementation:

• Loss function: mean squared error (MSE)

• Optimizer: Adam (stochastic gradient descent)

• Keras with Tensor Flow3 backend in Python 3.5 (NVIDIA GeForce GTX 1080 Ti 12GB)

1 – Mao et al., 2016

2 – Chen et al., 2017

3 – Abadi et al., 2016

Conv. Layer

4 filters
4 filters

Encoded 
image 4 filters

1 filter21x21x21 patch 21x21x21 patch

Low-dose Full-dose
Conv. Layer Deconv. Layer Deconv. Layer

Ramon, AJ et al, Proceed 2018 IEEE NSS + MIC
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Experimental framework (cont.)

• Clinical dataset of 930 clinical SPECT-MPI images

– Training: 740 patients (mixed normal/abnormal perfusion/motion)

– Test: 190 patients corresponding to ROC study for perfusion-defect detection1

• Reconstruction algorithms: 

– Optimized for maximum perfusion defect detection1

– FBP (cutoff freq. of order-5 Butterworth filter)

– OS-EM w/ AC-SC-RC (Gaussian width parameter [voxels], # of iterations)

• Training:

– Target: 100% dose with optimal reconstruction parameters1

– Input: Low dose (i.e. 1/2, 1/4, 1/8 or 1/16) using same recon. parameters as 100% dose

Patient: Female, Age: 75, BMI: 20.5

Input: FBP 1/8 dose (f=0.22)

SAX HLA VLA

Input: FBP 1/16 dose (f=0.22)

Target: FBP full dose (f=0.22)

Target: FBP full dose (f=0.22)

3D CAE

SAX HLA VLA

SAX HLA VLA

SAX HLA VLA

1 – Juan Ramon et al., 2017

3D CAE

Ramon, AJ et al, Proceed 2018 IEEE NSS + MIC

Experimental framework (cont.)

• Simulated low dose data

– Reduce dose by a fixed uniform proportion across all patients 

– Reductions of 1/2, 1/4, 1/8 and 1/16 with respect to full clinical dose

– Low-dose scans simulated by statistical subsampling of full dose studies

Example of simulated large 

defect on LAD territory:

SAX Polar map

Defect 65%

Defect 50%

Normal

Defect 35%

Defect 20%

• Performance evaluation

– ROC studies for perfusion-defect detection 

– Quantitative Perfusion SPECT (QPS) as a surrogate 

for human readers1

• Detects abnormalities by comparing to reference 

databases of normal images

• “Total perfusion deficit” (TPD) score

– Test data (190 patients) divided in:

1. 60 patients (30/30 male/female) for QPS reference

2. 130 patients for ROC study 

– (58 normal and 72 hybrid/simulated defects)

Ramon, AJ et al, Proceed 2018 IEEE NSS + MIC

Deep Learning Post-Reconstruction Denoising

Ramon, AJ et al, Proceed 2018 IEEE NSS + MIC

1. AUC for both 

FBP and OSEM 

decrease at 

significantly lower 

rate than with 3D 

post Gaussian 

filtering

2. AUC at  dose at 

6.25% (~2mCi) 

with  DL ~same 

AUC as OSEM at 

12.5% dose  without 

DL or FBP at Full 

dose.
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Deep Learning Post-Reconstruction Denoising

Ramon, AJ et al, 2018 IEEE MIC + NSS 

FBP and OSEM-AC-SC-RC for full and 16x dose reduction for 3D post-Gaussian vs deep 

learning (DL) with 16x dose reduction for male, age=75, BMI=29.7. The artefactual mild 

anterior and strong inferior cooling of the LV in FBP with full dose is corrected in OSEM with 

AC. With dose reduced by 16x, both FBP and OSEM exhibited visible distortion in the wall 

shape due to reduced counts. In contrast, such distortion is corrected with DL for both methods.

Deep Learning Post-Reconstruction Denoising

Ramon, AJ et al, 2018 IEEE NSS + MIC 

FBP and OSEM-AC-SC-RC for full and 16x dose reduction for 3D post-Gaussian vs deep 

learning (DL) with 16x dose reduction for female, age=44, BMI=35.2. The artefactual anterior 

cooling of the LV in FBP with full dose is corrected in OSEM with AC. With dose reduced by 

16x, both FBP and OSEM exhibited visible distortion in the wall shape due to reduced counts. 

In contrast, such distortion is corrected with DL for both methods. 

SUMMARY

• DL has found numerous applications in medical imaging.

• DL denoising has the potential to significantly reduce dose 

and / or imaging time in emission imaging (factors of 3-10, 

or more, have been suggested as possible depending on the 

modality and criterion).

• DL can also be used directly in reconstruction where it has 

direct access to the projection data.

• DL systems are dependent on network design, and the data 

and the error metric (MSE, L1, …) used in training.

• DL systems are opaque and generally not easy to clearly 

understand how the network is performing tasks.

• Beware of spurious behavior – loss of contrast of small 

objects.


