

Dose Concerns and Regulatory Requirements

- The rise of concerns of medically induced radiation
- Requirements from ACR accreditation and JC
- Dose monitoring and protocol review/revision/management

The Rise of Data Mining and Data Analytics

- "Data is the new electricity." -- Satya Nadella, CEO of Microsoft
- "Turn data into (actionable) insights." data evangelists

Advantages of Radiology in the Age of Data

• We are early adopters of informatics standardization in healthcare

Digital Imaging and Communications in Medicine

Radiological Society

Med Inform Assoc. 2018 Jul; 25(7): 885–893. shed online 2018 May 29. doi: <u>10.1093/ismia/ocv053</u> PMCID: PMC6016707 PMID: 29850823

Advantages of Radiology in the Age of Data

This means we have some infrastructure ready to use

Challenge 1: Diversity of vendor, model, & vintage

Challenge 2: Highly Fragmented Data

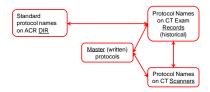
- An example from our workhorse CT750 (in ED)
- 1 yr. of data, 18569 exams
- 118 protocols in exam records
- From 5 GE CTs in my institution
 1 yr. of data, 48046 exams
- 365 protocols in exam records
- Valid reasons of so many protocols
- Fine-tuned & individualized protocols
- Mixture of old and new data in the exam records
- Tremendous amount of data to analyze
- How to cover them effectively?

Beth Israel Descenters Without Notice. Notice Medical Center

						П	
				Н	Ш	Н	Ц
			¥	44	Щ	Ш	
				Щ		Ш	
	E						

Challenge 3: The Clash of Names and Name Mapping

Synonyms, abbreviations, and typos exist in protocol names, e.g.:


- Abdomen/Pelvis, ABP, Abd/Pel, Abd-Pel
- Cancer Follow Up, CA FU, CA-FU, CAFU, CA F/U
- Above 300 lbs, > 300 lbs, 300+ lbs, above 300
- Without contrast, I-, C-, NON-CON, W/O
- Thorax vs. Chest, etc.

Beth Israel Descentes | 🐺 narves words, kinds Medical Center

Name Mapping

There exists several sets of names concerning patient dose and CT protocols

Beth Israel Descentes Medical Center

Beth Israel Deaconess 👹 HARMARD MEDICAL SCHOOL Medical Center

The Tower of Babel by Pieter Bruegel the Elder (1583), from wikipedia.org

Challenge 5: General Concerns

- Clinical users can be bombarded with overloaded information
- Data does not magically turn into information, knowledge, and insights
 It takes effort to identify complex patterns or cause-effect relationships from data

Beth Israel Desconess | 💓 Instrum Monous Advisor Medical Center "Let's shrink Big Data Let image: cutesy of datafoq.com and hope it magically be Right image: cutesy of smartineights.com

Technical Development and Teamwork

- A technical solution developed in-house
 - Geeks with enthusiasm and skill set
 - Desire of high-level flexibility from the system
 - Open source software resources
- Teamwork and integration into clinical workflow
 - Very supportive department
 - Teamwork of
 - Modality and division leadership
 - CT leadership
 - PhysicsInformatics

iniormatic

Community hospital leadership
 Model Clearcone

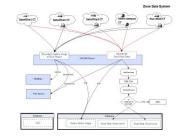
90	eres .	0
No.	N.	-12

13

14

General Components of A Data Mining System

- Data collection and data cleaning
- Data warehousing
- Data exploration
- Data visualization


The Data Collection Part

80% of a data scientist's valuable time is spent simply finding, cleansing, and organizing data. -- IBM

Data Collection Subsystem

We don't need to scrape every bit from the internet -- info is spoon-fed to us

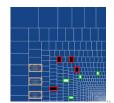
Radiation Dose Structure Report - A Blessing

- Radiation Dose Structured Report (RDSR) became widely available, thanks to the MITA XR29 initiative
 - RDSR can be trivially converted to xml for data collection
 - CTDIv & DLP always present for CT

MITA SMART INITIATIVE Preveny particular of a failure of the state of

Topmo Leon	1	Non-Shirt	1000111	2000762	name#"CodeValue">113830=/eloment>
trame for	******************			Loon 7.4"	name="CodingSchemeOesignator">DO%/element>
	10000 01010			210.000	name="CodeMeaning"-Mean CIDIvol-/element-
c/item>	rais. 0000'0104.	ALM. DO.	APR. 1.	11104 JX	in any a Cooper Voting, survey and an and and a construct
«/sequenc	6×				
		*r#*SQ*	carde	1" name	*"HeasuredValueSequence">
sitem car	d="2">				
<sequence< td=""><td>tac="0049.68+a</td><td>*r=*50*</td><td>carde</td><td>"1" none-</td><td>"MeasurementUnitsCodeSequence"></td></sequence<>	tac="0049.68+a	*r=*50*	carde	"1" none-	"MeasurementUnitsCodeSequence">
sites car	100 212				
-element	ter="0000.0100"	VIN-101*	100711	Long dr.	name="CodeValue":mSvv/elements
f name [ac.	1	ALC: 1 1 1 2 1 1	1000111	Loopter	names*CodingSchemeDesignator*>UCUMe/element>
totaslan	1			Longton	name="CodeMeaning">#Gy
	rale.0000'0104.	Al= 00.	100 T.	1004.4	name= coopercanting subjectments
«/sequent	62				
	tap="9040,a30a"	vr="DS"	10.01	lon#"6"	name="NumericValue">21.72=/element>

Useful Information Imbedded in DICOM Data



The Data Cleaning Part

- Direct results of data collection are generally dirty
- For example, the dose data can be polluted by
 - Invalid data, e.g., non-patient exams, incomplete exams

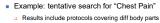
Duplicated records (e.g., produced by splitter)

Missing data

A Flexible and Smart Data Mining Subsystem

- With the wealth of data flooding in, how to <u>smartly select the right data</u> to answer clinical questions is the key.
- The capability to generate various data slicing is needed.

22


Beth Israel Descentes | 🐺 narrose without school Medical Center

Implement A Flexible Data Slicing Algorithm

- Build flexible data selection criteria using regular expressions for including and excluding desired patterns
 - (inclusion_regex, exclusion_regex), (INC, EXC), (INC, EXC), ...
- Script-driven, OOP-based modular system
- To explore data interactively
- To prepare plots for presentation in a batch-processing style

Data Exploration with Flexible Searching Criteria

I want to exclude the ABP exams in this search

Data Exploration with Flexible Searching Criteria

- A refined search of "chest pain"
 - Excluded all "ABP" exam types
- Note the script driven query and processing
 Easy to run in batch mode

_

Before 2016-Q4: Review of Bread & Butter Protocols

- Review of only Bread & Butter Protocol
- The problem is: How to cover the rest long-tail exam types
- The purpose of CTQA is not merely meeting regulatory requirements, but to find issues

96.0% 85.0% 80.0% 75.0%

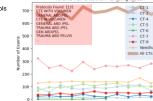
27

Since 2016-Q4: Section-by-Section Review

Section-by-Section Rotational Review with the support of different sections

One rotation

- 2016-10: Neuro
- 2017-02: MSK
- 2017-06: Abdominal and Chest
- 2017-09: Abdominal
- 2018-01: Procedural CT
- 2018-04: Cardiovascular CT
- 2018-07: Participation with ACR DIR
- 2018-10: Chest
- 2019-01: Neuro
- 2019-04: Abdominal
- Section leaderships are heavily involved



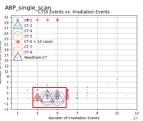
Section-by-Section Review

201901: Neuro	201904: ABP/Torso	201701: MSK		201810: Chest	
Major Protocols C - Head non-DE: 12360 C-Spine: 1559 Head and Neck CTA: 1360 Sieus: 1252 C - Neck 1000	Major protocols: ABP single scan: 8227 CAP 1-scan: 2471 CAP 1-scan: TRAUMA: 805 CAP 2-scan: Z232	 General mant types, exam 7, percentage (Yee MSK-Polyce (337, 24.8%) Kraee (168, 12.4%) Kraee Fulkerson (35, 2.4%) Andre (132, 9.7%) Shoulder (123, 97%) This (110, 8.1%) Femur (97, 7.3%) 		Major Protocols C. Chest: 4654 C. Chest: 2470 Chest: Lang Screening: 2217 Non-Gated Chest Pairs: 2976 Minor Protocols	
Eacial: 689 Ecial: 689 Ecipine: 629 Head CTA non-DE (2 secies): 409 Head/neck perfusion: 372	 CTU: 1092 ER CTU: 1096 CAP multi-scan: 553 CTA ABP 2-scan: 784 	Foot (87, 64%) Hip (79, 58%) Whit (78, 57%) Total coverage: 89.2% of the entire MSK or (1358 MSK exams)		Chest CTA/CTV: 109 Chest Super Dimensional: 178 Chest Biopsy: 237 T-Spine: 309	
T-Spinne 297 Minnet Protocols UDE Hoad single-scare 152 C-Neck: 130 C-Neck: 130 C-Neck 130 DE Hoad CTA and CTV: 60 DDE Hoad CTA and CTV: 60 DDE Hoad CTA 22 C-C-Hand mon-DE: 122 C-C-Hand mon-DE: 122	 Manor protocoli: CTA CAP 1=scarri 435 CTA CAP 2=scarri 432 CTA ABP multi-scarri 482 ABD Ordy 2=scarri 482 ABD Cody multi-scarri 562 ABP coarri 355 ABP multi-scarri 85 	201804: Cardiac	BREAND TOR COLORST, AR orgonyed to T CARDAC STRIV CTHEART MOV CTHEART MOV CARDAC STRIV CARDAC STRIV CARDAC STRIV CARDAC STRIV TRREAND TOR	KNIEN, PELINE CARDITIERRAFC SECTION (2) MERIE DE TEILEMANERT (2) CONTRAFT (2) CONTRAFT (2) CONTRAFT (2) CONTRAFT (2) CONTRAFT (2) CONTRAFT (2)	29
 Head/brain perfusion: 61 			Child Child Nool		29

Graphical Exploration: Volume Run Chart

- Volume run-chart can be used to show the changes over time, across scanners ABD/PEL exam from multiple scanner
 - Combined result from 13 protocols

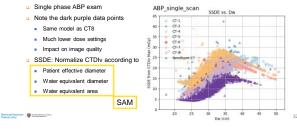
Volume Run Chart for: ABP_single_scan


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

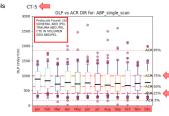
Beth land Descentes: Without without states Medical Center

Graphical Exploration: Scatter Plot of Radiation Event

Scatter plot of scan events gives clue about the # of scans and radiation

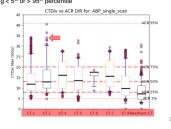

- events in an exam
- E.g., ABP Single-phasic exams
 - 1 true CT scan
 - 3-5 total irradiation events
 - CT scan Scout views
 - Monitoring phases
- Note: marker size **c** # of occurrence

Bethierael Descenees | 😻 menute edicio, cono Medical Center

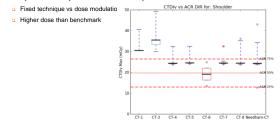

Graphical Exploration: CTDIv and SSDE vs. Patient Size

With scatter plot of dose vs patient water equivalent diameter, we can visually and intuitively find performance inconsistency across scanners

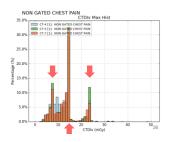
Graphical Exploration: Box Plot Over Time


- Boxplots can also be used to show the changes over time
- Single-scan ABD/PEL exam from 1 scanner (CT5) Combined result from 4 protocols

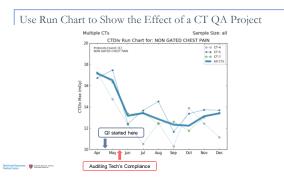
Graphical Exploration: Box Plot Across CT


- Boxplots is very useful for comparison across CT scanners
 - Outliers marked when then falling < 5th or > 95th percentile
 Compare against ACR DIR
 CTDIv vs ACR

Bethistal Desceness | 🐺 minute Mission and Medical Center


Real Issue Found: MSK Shoulder Protocols With Fixed mA

Boxplots also help to find issues in the practice


Graphical Exploration: Histogram of a BMI-based protocol

- Similar distribution observed from 3 GE 750 scanners
- Size-specific protocols: 3 BMI groups, 3 peaks

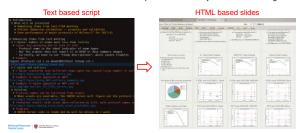
35

Beth Israel Desconess | 😽 manual adioon. Innon Medical Center

A Protocol Error Found from Histogram

- Single Scan Chest
- Identified issue from data

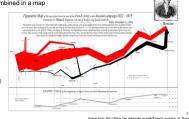
CT8 C+ Chest uses a fixed technique



Script-Driven Data Analytics Report Generation	
Script-Driven Data Analytics Report Generation	

Semi-automatic Generation of Reports for CT Quality Assurance meetings

Summary


- CT dose monitoring and protocol control are crucial components of the dynamic QA programs of modern imaging environments.
- A data mining pipeline can be formed to handle data collection, cleansing, warehousing, exploration, and visualization of these valuable operational and dosimetry data, as well as to answer various clinically relevant questions.
- Collaborations among different clinical teams and careful plans of protocol review sessions are critical for the effective integration into the clinical workflow and comprehensive coverage of CT protocols.

Outlook: From Data to Insights

 A famous data visualization masterpiece is the visualization of Napoleon's Russian campaign of 1812, by Charles Minard, 150+ years ago.
 Multi-dimensional data combined in a map

°C vs. date and location

40

Thank you for your attention!

- I'd love to hear your thoughts
 - Email: dzhang8@bidmc.harvard.edu

Data Mining: Cleansing, Validation, and Classification

- Data cleansing and validation against
 - Non-patients CT scans
 - Duplicated records
 - Invalid/incomplete data
- Parse, decompose, and normalize protocol names
 - To solve the "clash of names"
 - To build classifiers for the dose data
 - To group right data for presentation

oco	
	Done second clean-up and validation
	Protecol-same paring & decomposition
	Cere protocol name
	Tota analysis and preventation 60

Beth Israel Descenters | I winned without stress Medical Center

Protocol Name Decomposition

 Observation: many descriptive phases/fields are added to the core part to form a protocol name

Protocol Name Decomposition

Protocol names can be decomposed automatically:

Protocol Decomposing Results

Result: each long protocol name is decomposed into the core part and various descriptors

Scanner protocol name	Core protocol name	Contrast top	weight tag	Hardware top	Low Dose tag	tecindes.	Time tag	E of Examp
5.19 CHEST ROUTINE 185 - 200 LBS >-/?= 6/2011 LOW DOSE*	CHEST ROUTINE	5-704	135~ 200 LBS		LOW DOSE	3.19	395-11	41
5.22 CHEST BOUTINE UNDER 20045 2/2014 1051	CHEST ROUTINE GSI		UNDER 200485			\$.22	Feb-14	23
S 30 NON CON CHEST ROUTINE 125 200165 6/2011	CHESTROUTINE	NON CON	125 200.85			52	349-11	3
5.21 CHEST ROUTINE UNDER 200185 0/2013 *GSI	CHEST ROUTINE GE		UNDER 2001RS	8		5.21	Aug-11	
5.2 PE FEOTOCOL 135-2008te 1/2018 LOW DOSE	PE PROTOCOL		135-200 be		LOW DOSE	5.2	Mar-LO	
5.38 CHEST ROUTINE UNDER 135 LBS 1/1+ 6/2011 LOW DOSE*	CHESTROUTINE	6.704	UNIDER 135 LBS		LOW DOSE	5.18	349-11	
5.2 PE_PROTOCOL_136_200_LBS 12/2013 GSI	PE PROTOCOL GSI		135_200_LBS			5.2	Dep-13	
5.22 CHEST ROUTINE UNDER 200LBS 6/2013 1051	CHEST ROUTINE GSI		UNDER 200485			3.22	Aug-13	
0 3.20 CHEST BOUTINE OVER 200 (ES-1-0+4/2011 LOW DOSE"	CHEST BOUTINE	1.24	CV19 200 LBS		LOW DOSE	3.2	245-11	
1 3.39 DIFFUSE LUNO DISEASE 135 - 200 LBS 12/2008 LOW DOSE	DIFFUSE UUND DESEASE		235-200185		LOW DOSE	3.39	Dec-05	
2 5.85 PULMONARY NODULE P/V 135-200 L85 6/2012 LOW DODE	PULMONARY MODULE F/U		236-203185		LOW DOSE	5.63	349-12	
\$ 5-22 CHEST ROUTINE UNDER 200LBS 12/2013 *654	CHEST ROUTINE 631		UNCER 200485			5.22	Dec-15	
# 5.2 PE PROTOCOL 136 200 URS 7/2013-651	PE PROTOCOL 691		136 200 185			5.2	346-13	
S 5.19 NON CON CHEST ROUTINE UNDER 125/85 6/2011	CHESTROUTINE	NON CON	SPHORE LINERS			5.19	Aut-11	
& SUBNON CON CHEST ROUTINE LIS 200L86 6/2011	CHESTROUTINE	NON CON	125 200.85			5.18	349-11	
7 8.16-CCPO 1 CHEST/ABP UNDER 2008th 11/2011	COPO 1 CHEST/ABP	7	UNICER 200/bit			8.16	Nov-11	
5.2LNON CON CHEST ROUTINE OVER 200485-6/2011	CHEST ROUTINE	NON CON	OVER 200,85			5.23	30-11	
9 5.3 PE FROTOCOL +260be 1/2010 LOW DOSE	PE PROTOCOL		ACT 1		LOW DOSE	5.1	Mar-LO	
D 3.58 OFFUSE LUNG DISEASE UNDER 125 LBS 12/388ELOW DOSE	DIFFUSE UUNG DISEASE		UNDER 135 LBS		LOW DOSE	5.58	Dec-00	
1 3.1 PE PEOTOCOL <1358x 3/20101/0W DOSE	PE PROTOCOL	1	<1358m		LOW DOSE	5.1	Mar-10	
2 5.8 FEMUR/LOWER LEG F HARDWARE < 100 Bo 12/3012	PEMUR/LOWERLED		< 200 lbs	HARDWARE		2.8	Dec-12	