REDUCING SEDATION & ANESTHESIA IN PEDIATRIC MRI

Samuel Brady, M.S. Ph.D. DABR samuel.brady@cchmc.org 07/18/19

Conflicts of Interest: none

Acknowledgment

The Compressed Sense images were acquired and shared with me by Jean Tkach, Ph.D. clinical MR scientist at Cincinnati Children's Hospital

Background

- Acute risks from sedation & general anesthesia (S/GA) in pediatrics*
 - Cardiorespiratory depression
 - Upper-airway obstruction
 - Hypoventilation
 - Hypoxia (most common side effect**)
 - Hypotension
 - Post-sedation nausea, vomiting, disorientation, sleep disturbance and nightmares

Background

- Long term effects (mixed results)
 - Intelligence quotient and attention/executive functioning deficits*
 - No long term effect (5 yr follow up) found for S/GA in preemies**
 - FDA warning (12-14-2016): negative effects on developing brain
- Removing the discussion of side effects
 - S/GA incurred the greatest cost and had the longest visit duration***
 - Most MR schedules have substantial backlog
 - Quicker imaging is generally results in better imaging

Patient Preparation

- Child life coaching patients
 - Preparation videos
 - Patients/parents see the department and the MR experience before beginning screen process
 - Minimize nervousness
 - Mock scanner
 - Simulates sounds
 - Simulate claustrophobic scenario
 - Review patients ability to lie still

Courtesy: Nathan Artz, PhD St Jude Children's Res. Hosp.

Approaches to Reduce Sedation/GA

- Distractions-videos, music, light shows, parents involvement, etc.
- Noise-reduction
- Feed-and-bundle techniques
- Free-breathing acquisitions
- Sparse imaging algorithms
- Motion compensation algorithms
 - Gross motion
 - Cardiac
 - Respiratory
- Protocol brevity-eliminate unnecessary sequences/steps
- Use alternative imaging methods: e.g., CT or US

Sequence Options

- Latest technological breakthroughs changing how we acquire MR
 - Synthetic MR: simultaneous multi contrast acquisition
 - Fast acquisition
 - Quiet sequences
 - Free breathing imaging

- Synthetic MR: allows retrospective manipulation of image
 - Proposed in 1984, but computational power was lacking
 - GE (MAGiC); Philips (SyntAc, QMap); Siemens (SyntheticMR); independent vendors (SyMRI)

- Measure parametric properties of tissue
 - -T1 (R1), T2 (R2), proton density (ρ_H), and B₁ values
 - E.g., single acquisition (e.g., QRAPMASTER-SyMRI; 6 min)
 TR = 4000 ms, TE = 22 & 90 ms ETL = 12
 - Change the "signal" by manipulating ETL, ESP,
 - Create synthetic images by manipulating TI, TR, and TE

$$signal \cong \rho_{H} \left(e^{-\frac{TE}{T2}} \right) \left(1 - 2e^{-\frac{TI}{T1}} \right) \left(1 - e^{-\frac{TR - TI}{T1}} \right)$$
$$signal \cong \rho_{H} \left(e^{-\frac{TE}{T2}} \right) \left(1 - e^{-\frac{TR - (ETL * ESP)}{T1}} \right)$$

Ahmad et al. Pediatr Radiol 2018 48:37-49 Andica et al. J of neuroradiology 2019 46(4): 268-275

 Contrasts: T1, T2, STIR, T1 FLAIR, T2 FLAIR, dual IR, phase sensitive IR, and PDW

- How accurate is synthetic MR?
 - Tanenbaum et al. AJNR 2017 http://dx.doi.org/10.3174/ajnr.A5227
 - N = 109 (45 M; 64 F)
 - Conventional images acquired first
 - 2D T1W, T2W, T1W & T2W FLAIR & STIR, and PD
 - Multiple dynamic multiple echo MDME (many TE samples) synthetic MR sequence
 - MDME data reconstructed using MAGiC (GE)
 - Randomized blinded review by 7 neuroradiologsts (> 10 yr experience)
 - Intra observer test after 4 week memory washout period
 - Image quality: 5 point Likert scale, artifact analysis, clinical findings recorded (Osborn classification)

T1 FLAIR

T2

T2 FLAIR

PD

Tanenbaum et al. AJNR 2017 38(6):1103-1110

- How accurate is synthetic MR?
- Positives:
 - Diagnostic performance of synthetic imaging was similar to that of conventional MR imaging
 - Conventional morphology agreed > 95%
 - Suggested with shorter scan times less motion artifacts
- Negatives:
 - Except in the posterior limb of the internal capsule for T1, T1
 FLAIR, and PDW (> 80%)

Tanenbaum et al. AJNR 2017 38(6):1103-1110

- Continued...How accurate is synthetic MR?
 - Synthetic MR did not improve sensitivity and specificity of diagnostic read
 - MR imaging in neuroradiology
 - Sensitivity: 39% to 98%
 - Specificity: 33% to 100%
 - Still depends on training/reader experience
 - Fewer artifacts (all characterizations) were identified in synthetic
- Synthetic MR is mostly used for quantitative purpose, but may offer the opportunity to reduce scan time in the future

- Compressed Sensing (CS)
 - 1999: SENSE [parallel imaging (PI)]
 - Parallel imaging
 - Fills k-space using multiple RF coils coupled together w/ independent channels
 - 2016: multiband SENSE
 - 2017: compressed SENSE (CS; Philips)
 - CS + PI = complementary
 - PI produces more incoherent samples for CS
 - » Reduces incoherent aliasing artifacts
 - CS prevents high g-factors due to irregular sampling

Bushberg 3rd ed.

- How does compressed sensing (CS) work?
 - 1. MR data is redundant, i.e., MR imaging can be compressed
 - 2. MR scanners naturally acquire encoded samples, NOT direct pixel sampling
 - E.g., CT reconstruction matrix directly correlates with a spatial domain location (x,y)
 - E.g., MR reconstruction the received signal at time (t) is the Fourier transform of the object (O) sampled at spatial frequency (w)

$$s(t) = \int_{R} O(\vec{r}) e^{-i2\pi \vec{\omega}(t)\vec{r}} dr$$

- "Simple" images
- Some MR exams, such as angiograms, are inherently sparse
 - i.e., filled with very little pixel information
 - Sparse image data: Not acquiring some of this information will not affect image reconstruction
 - Thus allowing speeding up of the acquisition

- Complex images, such as brains, are not inherently sparse
 - Must be made to be sparse
 - Using a sparsifying transform (e.g., Wavelet domain)

k-space

Fourier Transform

$$s(t) = \int_{R} O(\vec{r}) e^{-i2\pi \vec{\omega}(t)\vec{r}} dr$$

image-space

Fully sampled k-space takes time

- Must properly under sample k-space
- Coherent vs. incoherent k-space sampling
 - Coherent sampling leads to aliasing artifacts
 - Incoherent sampling leads to noise image

Dspace.library.uu.nl

Lustig et al. IEEE signal processing mag march 2008 72

Incoherent sampled Fourier Transform k-space

 $s(t) = \int_{R} O(\vec{r}) e^{-i2\pi \vec{\omega}(t)\vec{r}} dr$

image-space

Sparse sampled k-space \rightarrow noisy image

Denoised image

Inverse Fourier Transform

 $\Im^{-1}{s(t)}$

Denoised k-space

Incoherent sampled k-space

Subtract k-spaces

Denoised k-space

Common points = patient data Uncommon points = noise

Fully Sampled

Incoherently sampled

30 iterations

- Compressed Sensing (CS)
 - Cannot use with EPI, MultiVane (PROPELLER), partial NSA, MRS, OMAR (MARS/VAT/SEMAC), etc.
 - CS does best for sparse data sets, e.g. TOF MRA, REACT, MRCP
 - Aggressively apply CS: 3T and 3D
 - Less sensitive to coil geometry (number of coil elements and arrangement) vs SENSE
 - Does not do well with gross motion (worse than SENSE)
 - But minimizes patient breathing/cardiac motion because faster

• Initial examination average time reduction

	Original Time (min)	New Time (min)	Reduction (min)	Reduction (%)
Ankle	22:03	13:20	8:43	40%
Trauma Knee	19:07	19:07	4:08	18%
Elbow	31:47	26:21	5:26	17%
Whole Body (6 stations)	35:28	29:30	5:58	17%
Routine Brain (> 2yr old)	18:27	17:09	1:18	7%

3D PDW View

16yo male with ridged planovalgus with bilateral chronic foot pain

Brain 2D FLAIR

14yo male with headache, low body temp and reported episodes of LOC

Ingenia 1.5T

2:56 min CS = 1.8

13yo female, new onset hallucinations (visual and auditory)

Ingenia 1.5T

3:43 min CS = 2

3D TOF MRA

12yo male, new onset dystonia, facial droop lasting 30min 3x a week

6:33 min

Ingenia 1.5T

4:27 min CS = 3

Abdomen FSE

20 yo woman with right upper quadrant pain following cholecystectomy

Elition 3T

136 kg (300 lb) Adult

Elition 3T

No CS (4:33 + RespTr)

CS=4 (1:08 + RespTr)

CS=24 (0:15 BH)

Cardiac REACT

Young adult with left subclavian vein stenosis (with respiratory triggering)

mDixon Quant

Ingenia 1.5T 10.1 sec

 $4.7 \sec CS = 5$

- Quantitative accuracy
 - Need to determine how CS affects quantitative MR metrics, e.g.:
 - Elasto: kPa
 - T2*
 - PDFF
 - mDixon Quant

- Current techniques to reduce MRI noise:
 - Gradient insulation
 - Force compensation
- Neither directly address the root cause:
 - Rapid directional gradient switching
- Siemens' QuietX & GE's Silenz are software solutions

- Characteristics of a quiet sequence (per TR):
 - Gradients are on during the whole TR
 - But with very small TE (TE = 0.016 ms)
 - Acquired in radial k-space instead of Cartesian
 - Smaller tip angles
 - Reduces slew rates

Siemens

GE BRAVO sequence

Grodzki, M & Heismann, B. Quiet T1-weighted head scanning using PETRA. Proc. Intl. Soc. Mag. Reson. Med. 21 (2013)

- Advantages:
 - Kids: reduced sedation
 - Patients can hear the movies used for distraction
 - FMRI: no auditory stimulation
 - Image Quality: Less vibrations from gradient banging equals less image artifacts
 - Bioeffects: No peripheral nerve stimulations
 - Intraoperative surgery: MD's can communicate easier

- Quantitative contrast comparison
 - Myelination assessment in children w/ conventional SE
 - Compared using GE 750w 3T
 - 24 channel head coil
 - T1W: 3D GRE short TE and small flip angle and radial k-space
 - T2W: 2D SE w/ PROPELLER

<u>Matsuo-Hagiyama</u> et al. <u>Magn Reson Med Sci</u>. 2017; 16(3): 209–216.

<u>Matsuo-Hagiyama</u> et al. <u>Magn Reson Med Sci</u>. 2017; 16(3): 209–216.

- Noise reduction:
 - T1W: 82dB → 53 dB (~ 30 dB)
 - T2W: 85 dB → 59 dB (~26 dB)
- How does that compare with ear plug noise reduction?
 NRR rating of 33
 - $NRR = \frac{33-7}{2} = 13 \ dB$

– NRR rating of 22

•
$$NRR = \frac{22-7}{2} = 7.5 \ dB$$

- Major challenges in cardiovascular MRI:
- Image quality degradation due to respiratory motion
- Long scan times need
 - Breath hold (BH) acquisition
 - BH can be difficult for sick patients and pediatrics

- Long scan times using diaphragmatic navigator gating
 - Predefined acceptance window of breathing cycle (e.g., end expiration)
 - All other data rejected for image reconstruction
 - Small gating window 3-5 mm
 - Prolonged acquisition times
 - Irregular breathing may require scan abortion

- Free breathing acquisition requires:
 - Shorter scan time
 - 3D CINE acquisition
 - Novel data sampling schemes
 - Binning data WRT respiratory cycle

- Under sampling reconstruction (e.g. CS) + motion correction

mDIXON IP

mDIXON OP

Conclusion

- MRI is a rapidly evolving field
- New technologies are largely software-based
 - Used to speed up MR
 - Fast & accurate MR = better MR
- Some software technologies require new scanner platforms – \$\$\$
 - Usually with time, manufacturers will make software available for older (legacy) scanners

Conclusion

- Staying current with new technologies
 - Will require additional training
 - Radiologists
 - Technologists
 - Medical physicists
 - Team work will aid in enable proper technology implementation
 - Goal: improved patient care

Thank you

samuel.brady@cchmc.org

