How to Oversee Automated Planning

Ping Xia, Ph.D. Professor of Molecular Medicine Cleveland Clinic, Cleveland, OH

• Philips: Research Grant

Learning Objectives

- Understand the technique for iterative OAR objective optimization
- Understand the technique to use libraries of previous plans to generate a plan best suited to meet clinical objectives
- Understand the technique of multi-criteria optimization (MCO).
- How medical physicists oversee plans that are created using these advance techniques and understand the potential pitfalls.

What are "automated" plans?

- There is no "automated" plans, but plans created with some computer aided automation.
- Inverse planning is one of automation tools.
 - Auto-planning module (AP)
 - Knowledge based planning (KBP)
 - Multi-criteria optimization (MCO)

Three Key Components in Inverse Planning

- Planning dose objectives
 - Maximum dose, Minimum dose, Mean dose
 - Vxx (e.g, V20_{Gy}), Dxx (e.g., D95%)
- Cost functions quantitatively measure the goodness (based on the dose objectives) of a plan
- Search engines find solution (intensity fluence maps) with the lowest cost.

Problems with Current Inverse Planning

- The dose objectives are not well defined for each case using KBP can mitigate this problem.
- The solution found from optimization is not unique (due to the use of gradient search engine) using a progressive optimization
- Trade-off among many solutions using MCO to show.

Local Minimum and Global Minimum

How Does Knowledge Based Planning Work?

Modeling Planning Knowledge

DVH/DTH Feature Extraction and Dimension Reduction

Principal Component Analysis (PCA)

Modeling Planning Knowledge

How Does Auto Planning Work?

Auto-Planning in Pinnacle System

- Mimics the planners' thought process
- Utilizes the planners' tricks to create surrounding structures and tuning contours automatically
- Automatically runs multiple loops while adjusting planning objectives – similar to what planners manually do

Ouyang Z et. al. JACMP, 2019

Input Planning Goals

Target Optimization Goals	Dose	
ROI	cGy	
◆ T2-4 Tumor	<u> </u>	

1	Organ At Risk (OAR) Optimization Goals					Dose	Volume			
		ROI		Туре		cGy	(%)	Priority	(Compromise
		Cord T2-4		Max Dose 📃	J	1350 I		High		
	Ŷ	C7 – T4 cord		Max DVH	1	1000 <u> </u>	Ĭ5	High		×
	Ŷ	Cord T2-4	-	Max DVH	1	Ĭ 900	Ĭ5	High	-	
	Ŷ	Ring_5mm_T2	-	Max DVH	1	Ĭ1400	Ĭ10	High	-	×
	Ŷ	ring_2cm_T2	-	Max DVH	1	1000 <u> </u>	Ĭ 10	High	-	×
	Ŷ	ESOPHAGUS	-	Max Dose 🗖	1	1600		High	-	×

Automatic Created Planning Objectives

	I 1600	Ĭ20	0.104445	
	Ĭ 1600	Ĭ20	0.0647136	
	Ĭ 2567.48	Ĭ35	2.80684e-06	
TargetSurround_/=	Max DVH	, [490.509] 5	 [10.125] 0.01674	
	Max Dose 🖃 🔲	, [894.451	[0.125 0.0189307	
	Max DVH 🖃 🔲	, [998.786] 10	[0.125 0.013325	
	Max DVH	Ĭ1260 Ĭ10	ž 100 1.46928	
	b 🕹 BodyMinusTarget 💷 🔤	vlax Dose 💷	<u></u> [640	Ĭ100 5.63819
◆ T2-4Tumor_AP_■	b 🕹 BodyMinusTarget 💷 🔤	vlax Dose 💷	J [286.574	Ĭ0.125 0.0991067
		Max DVH 💷	J [900] 5	j 100 0.194692
		vlax DVH 💷] [648.938] 5	I0.125 0.00602535
		Max DVH 💷	J [810 [5	Ĭ60 0.55108
		Max Dose 💷	1215	<u>100</u> 0.144602
		vlax Dose 🖃 🗌	J [746.603	0.125 0.00694334

Multi-criteria Optimization (MCO)

Pareto Frontier

MCO Implemented in RaySearch

- Requires a set of dose constraints (anchor points) no violation allowed.
- Requires a set of dose objectives (tradeoffs) negotiations allowed.
- Multiple (2n+1) plans are created automatically according number (n) of tradeoffs.
- Users can lock the satisfied tradeoffs to narrow the search space.

Navigation Panel

Courtesy of Jeremy Donaghue

The Ideal World

Patient specific DVH predictions No "one size fits all" Dose constraints

Automatically create a plan that meets the predicted DVHs

Provide trade-off solutions

Promises and Pitfalls

- Use of these advanced planning tools in IMRT planning improve plan quality, efficiency, and consistency.
- Using these advanced planning tools prevents "bad" plans.
- Plans created from these tools are not necessary clinical acceptable.

Lack of Spatial Information in the Cost Functions and Objectives

Partial Brain Cases

Rx: 60 Gy to HD-PTV, 51 Gy to LD-PTV

OARs	Goals	Clinical	AP	KBP	МСО
Brainstem	<60 Gy	61.1 Gy	60.99 Gy	59.95 Gy	59.47 Gy
Chiasm	<56 Gy	54.5 Gy	55.59 Gy	55.44 Gy	50.15 Gy

63 Gy, 60 Gy, 51 Gy, 45 Gy, 35 Gy

OARs	Goals	Clinical	AP	KBP	МСО
Brainstem	<60 Gy	61.1 Gy	60.99 Gy	59.95 Gy	59.47 Gy
Chiasm	<56 Gy	54.5 Gy	55.59 Gy	55.44 Gy	50.15 Gy

Spinal SBRT Cases

Rx: D90% > 16 Gy

	Goal	Clinical	AP	KBP	MCO
Spinal Cord (Max. Dose)	<14 Gy	13.9 Gy	14.4 Gy	14.1Gy	12.8 Gy

Lu L, et. al. JACMP, 2019.

	Goal	Clinical	AP	KBP	MCO
Spinal Cord (Max. Dose)	<14 Gy	13.9 Gy	14.4 Gy	14.1Gy	12.8 Gy
PTV16		20 <u>16</u>	Gy Gy	12 10	Gy
					-,

Lu L, et. al. JACMP, 2019.

Prostate + Pelvic LN Cases

Rx: PTV-protstae 70 Gy, PTV-LN 50.4 Gy in 28 Gy

	Goal	Clinical	AP	KBP	MCO
Bladder	V63Gy <10%	16.28%	7.40%	7.02%	11.18%
Rectum	V63Gy <10%	12.15%	7.00%	6.25%	5.95%
Rectum	V45Gy < 30%	44.47%	22.21%	27.40%	23.44%

Oropharynx Cases

Rx: PTV-HD 70 Gy, PTV-LD: 56Gy

	Goal	Clinical	AP	KBP	MCO
Coincl coud	D0 02004 45 Cu	46.61	27.40	42.05	20.22
Spinal cord	DU.U3CC< 45 Gy	40.01	37.48	42.05	39.3Z
Paratid L	Dmean <26 Gy	34.17	24.53	28.53	25.01
Paratid R	Dmean <26 Gy	35.16	35.46	29.29	23.78
Mandible	D0.03cc <73 Gy	73.69	73.83	75.95	73.26
Trachea	Dmean <45 Gy	32.04	24.52	31.03	22.27
Esophagus	Dmean < 50 Gy	18.77	16.52	19.8	12.34
Oral cavity	Dmean <35 Gy	30.81	28.14	29.99	22.1

Take Home Message

- DVHs and specific dosimetric end-points (e.g., mean dose) are not sufficient to assess plan quality. Carefully examining 3D dose distributions is important.
- Advance planning tools can assist dosimetrists to create plans with reduced variations but clinical judgment and experience are still important
- The pitfall is that the desired 3D dose distributions cannot be clearly described by the numeric planning objectives.

Acknowledgement

- Matt Kolar, M.S.
- Zhilei Liu Shen, Ph.D.
- Lan Lu, Ph.D.
- Jeremy Donaghue, M.S.
- Jackie Wu, Ph.D. Duke University

Cleveland Clinic Cancer Center at Main Campus

