Memorial Sloan Kettering Cancer Center

Machine Learning in Radiotherapy QA

Maria F. Chan, PhD, FAAPM

61th Annual Meeting of AAPM, San Antonio, TX

Disclosure

Funding

 NIH/NCI Cancer Center Support Grant P30 CA008748

Relevant financial interests

None

 Ashland Inc. Research Grant #SKI-1069

Memorial Sloan Kettering Cancer Center

Outline

Machine Learning

Clinical Implication

Types of Learning

1. Unsupervised learning

- Training data without labeled responses
- Clustering, probability distribution, etc.

2. Supervised learning

- Training data with labels or desired outputs
- Prediction, classification, etc.

Validation of a ML Model

- Use different ML algorithms (same data) to compare the results
- Use a hold-out sample (in-sample testing)
- Compare with well-established models
- Validate using a sample not from the training period (out-of-time)
- Validate using a sample that is selected from a different population than that used to build the model (out-ofsample)

Memorial Sloan Kettering Cancer Center

Unsupervised Learning Example (Clustering)

Classifying patients' breathing patterns into sub-groups to customize the treatment target range using *RPM data*

Supervised Learning Example (LSTM)

Semi-supervised Learning Example (SVDD)

Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description

Prediction of MLC Positional Errors using Machine Learning

A machine learning approach to the accurate prediction of MLC positional errors - Cubist model outperformed linear regression and random forest

In all cases the DVH curves calculated using the predicted positions are in closer agreement with the delivered curves than are the planned curves.

Workflow of the extraction of errors between DICOM-RT and Dynalog files and the extraction of leaf motion parameters from planned positions

on, JM Park, SY Park et al 2016 Phys. Med. Biol. 61 2514 doi:10.1088/0031-9155/61/6/2514

Predictive Time-series Modeling using ANN for Linac Beam Symmetry

IMRT QA using Machine Learning

Predicting IMRT QA gamma passing rates for a risk-based QA program and adaptive planning

Virtual IMRT QA

Penn Data (8o features extracted):

- 498 clinical IMRT plans were planned in Eclipse. Clinacs (M120) or TrueBeam (HD MLC) using *MapCHECK*

MSKCC Data (90 features extracted):

203 clinical IMRT beams were planned in Eclipse. Trilogy (M120) using *Portal Dosimetry* (100MU = 0.907CU)

Poisson regression with Lasso regularization was trained to learn the relation between the plan characteristics and each pass rate

Memorial Sloan Kettering Cancer Center

Features extraction from the Eclipse database using SQL queries

- MapCHECK: ✓ Fraction of area delivered outside a circle with 20 cm radius MU factor (MU/Gy)
- ~
- ✓ Fraction of opposed MLCs with aperture smaller than 5 mm (DLG, dose algorithm) 1
- Portal Dosimetry: Complete irradiated area outline (CIAO) Fraction of MLC leaves with gaps smaller
- than 20 mm or 5 mm Fraction of area receiving less than 50% of the total CU area

es, MF Chan et al 2017 J A Phys, 18(5):279-284, DOI: (10.10 n2.12161)

Virtual IMRT QA: Modeling

Passing Rate = $100 - e^{-\mu} = 100 - e^{(\beta_0 + \beta_1 \chi_1 + \beta_2 \chi_2 ... + \beta_{80} \chi_{80})}$

- x is a 80 dimensional vector, (1, x₁, x₂, ...x₇₉); each represents one of the features (complexity metrics) β^{T} is the transpose of a constant vector with the same dimensions as x
- β is estimated as the constant vector maximizing the conditional
- probability of obtaining $\boldsymbol{\beta}$ giving our dataset of failing rates and complexity metrics

 $argmin_{\theta}Loss(\theta|D) = argmin_{\theta} \left[- \Sigma_{j=1,n}(\gamma_{j} x_{j} \theta^{T} - e^{x j \theta T}) + \lambda |\theta| \right]$

- D represents dataset: the pair of all features of a given plan j(x_j) and the failing rate given by y_j λ is a constant governing complexity

G Valdes, R Scheuermann et al 2016 Med Phys, 43(7):4323-4334, DOE (10.1118/1.4953835)

Memorial Sloan Kettering Cancer Center

Virtual IMRT QA (Composite Field - MC)

Virtual IMRT QA (Individual Field - PD)

Multi-Institutional Validation

G Va

Virtual IMRT QA Workflow

Deep Nets vs. Expert Designed Features in IMRT QA Prediction

7

Deep Learning-based Prediction Model for IMRT QA

S To

Identifying Errors in Delivery by Radiomic Analysis of Gamma Images with CNN

Predictive VMAT QA Model with VMAT Plan Characteristics and Linac QC Metrics

Impact of Delivery Characteristics on VMAT for Different Treatment Sites

MCS = modulation complexity score; EM = edge metric; PMU = plan-normalized MU; SAS = small aperture score; MFA = mean field area; UAA = union aperture area; ALS = average leaf speed; S (a–b) = proportion of leaf speed ranging from a to b cm s–1.

Virtual VMAT QA: Prediction and Classification

Memorial Sloan Kettering Cancer Center

Machine QA using Machine Learning									
Group	QA Source	Data Set	ML Model	Research Highlight					
Carlson et al., PMB, 2016	DICOM_RT & Dynalog Files	74 VMAT plans	Regression, Random Forest, Cubist	MLC Position Errors Detection					
Li & Chan, AMLS, 2017	Daily QA Device	5-year daily QA data	ANN time-series, ARIMA models	Symmetry Prediction					
Naqa et al. Med Phys, 2019	EPID	119 images from 8 Linacs	Support Vector Data Description (SVDD), Clustering	Gantry sag, Radiation field shift, MLC offset					

Patient-Specific QA using Machine Learning									
Group	TPS/Delivery	QA Tool	Data Source	ML Model	Research Highlight				
Valdes et al. Med Phys, 2016	Eclipse/Varian	MapCHECK2	498 IMRT Plans	Poisson Regression	Founding Paper				
Valdes, Chan et al. JACMP, 2017	Eclipse/Varian	Portal Dosimetry	203 IMRT Beams	Poisson Regression	Multi-sites Validation				
Interian, Rideout et al. Med Phys, 2018	Eclipse/Varian	MapCHECK2	498 IMRT Plans	Convolutional Neural Network	Fluence Map as Input				
Tomori et al. Med Phys, 2018	iPlan/Varian	EBT ₃ film	60 IMRT Plans	Convolutional Neural Network	Planar Dose, Volumes, MU				
Nyflot et al. Med Phys , 2019	Pinnacle/Elekta	EPID	186 IMRT Beams	Convolutional Neural Network, etc.	Image features, Radiomic QA				
Granville et al. PMB, 2019	Monaco/Elekta	Delta4	1620 VMAT Beams	Support Vector Classifier	1 st VMAT model, w/ QC Metrics				
Li, et al. <i>Red Journal, 2019</i>	Eclipse/Varian	MatriXX	248 VMAT Beams	Poisson Lasso & Random Forest	Specificity, Sensitivity, Clinical				

Ĩ		 	

Machine Learning Models Could Predict Radiotherapy OA Results

 Machine learning enables machine QA data to be more intuitive, leading towards automated QA.

Prediction of QA results could have profound implications on the current IMRT process.

Questions?

Memorial Sloan Kettering Cancer Center