Opportunities and challenges in particle radiotherapy
Katia Parodi, Ph.D.
Ludwig-Maximilians-Universität München (LMU Munich)
Department of Medical Physics, Munich, Germany

San Antonio, July 15th, 2019

Conflict of Interest
Research collaboration and two license agreements with RaySearch Laboratories AB

Conflict of Interest

Physical and biological rationale of ion beam therapy

Physical selectivity
- Depth-dose profile (Bragg-Peak)
- Lateral scattering (Z>2)

Biological Effectiveness
- Elevated local ionization density
- Influence of tumour oxygenation (OER)
- Optimal differential effect at Z ≈ 6

Is what we see what the patient receives?

Clinical rationale of ion beam therapy

RBE models in treatment planning
- Protons
 - Constant RBE = 1.1 clinically used
 - Known RBE variations with LET
 - Uncertainties of different models (typically based on LET, and α/β)
 - Unclear correlation to outcome
- Carbon ions
 - Variable RBE scheme (accounting for mixed field)
 - Different models used in the clinics (LEM, MMX) based on different underlying assumptions
 - Unclear correlation to outcome

Treatment (re)planning uncertainties

Patient model
- Metal artifacts
- Image quality (CBCT)
- HU-SPR conversion
- Tissue-dependent biological parameters

Dose calculation
- Beam model
- Tissue heterogeneities
- Biological models

Treatment (re)planning uncertainties

Nuclear Physics for Radiotherapy Report, IUPECCEC, 2014
Chordoma, \(^{12}\)C, GSI Bamstadt

Planning CT

CT after 2 w. RT

Planning CT

CT after 5 w. RT

Planning CT

Bortfeldt, AAPM 2019

Intrafractional anatomical changes

Treatment delivery uncertainties

Mitigating range uncertainties in clinical practice

Mitigating uncertainties in clinical practice

Dose and range verification

Pre-treatment range verification

Dose or range verification?

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Daily practice of compromising dose uniformity for safe delivery

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography

Validation of the patient-specific stopping power ratio (SPR) or probing beam range in vivo

Well defined relationship between range and 80% distal dose fall-off

Monitor beam range or distal dose fall-off pre-, in- and post-treatment

Dual-energy CT (DECT)

Implanted/endoscopic detectors

Range probe, ion radiography/tomography
Pre-treatment range verification – Dual Energy Computed Tomography

Ion radiography (iRAD) / tomoscopy (ICT):
- Range probing of few selected spots (iRAD)
- Integral SPR determination (iRAD)
- 3D SPR reconstruction (ICT)

Several detector concepts under investigation worldwide

Competitive results of ICT prototype vs dual-source DECT (MAPE of 0.55% vs 0.67% at ~20 lower dose)

ICT promises SPR accuracy better than 1% at dose ≤ 1-2 mSv

Pre-treatment range verification – IRAD/ICT

In-treatment range verification – ionoacoustics

Ionoacoustics signal depends on localization of energy deposition in space (hence enhanced for PBS) and time

Sub-mm range retrieval accuracy and precision in water at few Gy dose with hydrophones at intrinsically/Artificially pulsed synchro/Isocronous cyclotrons

Expected (sub)millimeter range verification capabilities also in heterogeneous patient anatomy, but highly sensitive, broadband transducers needed

In-/post- treatment range verification – Positron Emission Tomography (PET)

Irradiation-induced 15F-activity of different signal strengths and correlation with the dose depending on
- Primary ion species
- Acquisition time (isotope half-lives: ~2-20 min)

Limited to special anatomical locations and passive delivery
In-treatment range verification – In-beam PET

First clinical experience based on instrumentation adapted from nuclear medicine
Feasibility to detect inter-fractional changes (anatomy, positioning) despite low SNR, biological washout and not yet optimal instrumentation
Next-generation dedicated detectors able of dynamic imaging just entered clinical evaluation

Prompt gamma spectroscopy
– Exploits PG energy information
– Custom-made collimated prototype close to start pilot clinical study @ MGH

Prompt gamma timing
– Exploits timing information, overcoming collimation
– Custom-made prototype under development for future clinical translation @ Dresden

Compton camera imaging
– Exploits Compton kinematics, overcoming collimation
– Commercial prototype under further development for future clinical translation @ Maryland

In-treatment range verification – Prompt gamma (PG)

Fast (sub-ns) emission eliminates issue of biological washout
Signal fall-off is closely correlated to Bragg peak position due to lower cross section thresholds than for PET
Dedicated developments for directional detection of high energy PGs (> 2.7 MeV) embedded in huge neutron background
Prototype 1D PG camera with slit collimators

Post-treatment range verification – Offline PET and MRI

Data acquisition after irradiation with offline diagnostic scanners

Conclusion & Outlook

Treatment planning strategies can account for physical and biological uncertainties, however compromising achievable dose conformity
Additional studies needed to improve biological models
In vivo dose / range verification remains unmet challenge, although many approaches are possible before, during and after treatment
Promising techniques for in vivo SPR assessment and real-time range verification are close to / just starting clinical translation & evaluation
Reduction of uncertainties at planning & delivery stage will enable more effective dose delivery and likely impact clinical outcome
Acknowledgement

Kevin Teo, University of Pennsylvania
David Carlson, University of Pennsylvania
Jonathan Farr, ADAM

Further reading:
Medical Physics Special Issue
"Current Challenges and Prospects in Particle Therapy"
(edited by J. Farr & K. Parodi, 2018)

Thank you for your attention