

UNIVERSITY & MARYLAND

Disclosures

No Conflicts of Interest

UNIVERSITY «MARYLAND SCHOOL OF MIDICINE

		ne

Introduction	Part 1:	Part 2:	Part 3:
	Commissioning &	Dosimetric	Breath-hold Plan
	Implementation	Comparisons	Reproducibility
Motion Management Spirometry System Gated Voluntary Breath Hold (SDX): Process Overview	Preparation & Patient Training Initial SIM Image Guidance and Treatment	Breath Hold vs Non- Breath Hold • Patient Data & Analysis • Results: • Liver • Lung	Breath Hold Plans • Patient Data & QACT Evaluation • Results: • Target Coverage • OAR Dose

UNIVERSITY #MARYLAND SCHOOL OF MEDICINE

Maryland Proton Treatment Center (MPTC) University of Maryland

Varian ProBeam

- 5 room facility (4 gantries, 1 fixed beam)
 First treatment in February 2016
 4 of 5 treatment rooms open and treating
- In all treatment gantries:
 Pencil Beam Scanning (IMPT)
 Volumetric imaging (cone beam CT)

UNIVERSITY & MARYLAND

- SDX breath-hold system Dyn'R
- First SDX patient: <u>March 2018</u>
 # of SDX patients = 45
 Liver, lung, esophagus, ...

UNIVERSITY «MARYLAND

Introduction	Part 1:	Part 2:	Part 3:
	Commissioning &	Dosimetric	Breath-hold Plan
	Implementation	Comparisons	Reproducibility
Motion Management Spirometry	• Preparation & Patient Training	Breath Hold vs Non- Breath Hold	Breath Hold Plans
• Gated Voluntary	Initial SIM Image Guidance	Patient Data & Analysis	Patient Data & QACT Evaluation
Breath Hold	and Treatment	• Results:	• Results:
(SDX): Process		o Liver	o Target Coverage
Overview		o Lung	o OAR Dose

UNIVERSITY «MARYLAND -Motion Management

- · External breathing metrics have been demonstrated useful in
 - o Predicting the tumor motion
 - o Reducing respiratory motion uncertainties
 - o Sparing organs at risk

· Breath-hold (BH) technique

- o Mitigates motion of the target
- o Minimizes target margins
- o Improves normal-tissue sparing

Vedam, et al. Phys. Med. Biol. 48, 2003 Low et al, Med. Phys. 30, 2003

UNIVERSITY # MARYLAND

Motion Management

- · There are different voluntary BH techniques
 - Non-spirometric (external surrogates)
 - · Surface imaging (Vision RT)
 - · Real-time Position Management (RPM)
 -

- Spirometric (internal volumetric air flow)

- · Active Breathing Coordinator (ABC)
- · SDX with video guidance
-

UNIVERSETY #MARYLAND SCHOOL OF MEDICINF

Motion Management

The spirometry system monitors the patient's breathing phase in real time.

Advantag

- Clinical feasibility
- Reduces tumor motion
 Reduces treatment margins,
- Audio-visual feedback improves reproducibility
- Gated treatment delivery
 Accurate surrogate for internal respiratory motion

Disadvantages:

- Signal drift
 Increase in the volumetric tidal flow compared to normal breathing (without spirometer)
- Uncomfortable for patients
- Gating module is not compatible for all treatment delivery systems
 Still is only a surrogate

Lu et al, Med. Phys. 32 (7), 2005 Gilbert et al. J. Appl. Physiol. 33, 1972 Adapari et al. J. Appl. Physiol. 48, 1980

SDX Calibration & Calibration Check

- Calibration Syringe A daily calibration/verification must to be done on the SDX System Using a 3-Liter calibration syringe serving as a volumetric reference

· Check signal drift (problem of spirometry system)

INIVERSITY #MARYLAND CHOOL OF MEDICINE			
	Part 1: Commissioning & Implementation	Part 2: Dosimetric Comparisons	Part 3: Breath-hold Plan Reproducibility
Motion Management o Spirometry	Preparation & Patient Training	Breath Hold vs Non- Breath Hold	Breath Hold Plans
System	• Initial SIM	• Patient Data & Analysis	Patient Data & QACT Evaluation
Gated Voluntary Breath Hold (SDX): Process Overview	Image Guidance and Treatment	• Results: o Liver o Lung	• Results: o Target Coverage o OAR Dose

UNIVERSITY & MARYLAND

Part 1: Commissioning & Impl

SDX Commissioning

The SDX system with automatic gating module was commissioned at MPTC

· Goal: Check the effect of breathing interruption on delivered dose

Point and 2D-planar dose measurements of 5 gated plans (3-4 fields per plan) with and without range shifter.

Site	Beam Delivery Type	# of Fields	Range Shifter
Esophagus	SFO	3	None
Esophagus	SFO	3	None
Lung	SFO	3	5 cm
Lung	MFO	4	5 cm
Abdomen	MFO	3	None / 2 cm

For each field: three measurements with 2, 3 and 5 breath-hold were done and evaluated against the one without breath-hold (reference).
 Point dose (%difference)

• 2D-planar dose gamma passing rate (1%/1mm)

UNIVERSITY & MARYLAND

SDX Commissioning

tation

Part 1: Commissioning & Impleme

Results:

SDA	Commissioning	

Site	Beam Delivery	Field ID	Range Shifter	F	oint Dose %Di	ff	Gamm	Index Passing [1%/1mm]	Rate %
Type		(cm)	2 B H	3 BH	5 BH	2 BH	3 BH	5 BH	
		1	0	0.20%	0.20%	-0.20%	100	100	99.4
Esophagus	SFO	2	0	-0.20%	0.00%	0.00%	100	100	100
		3	0	-0.20%	-0.40%	0.00%	100	100	100
		1	0	0.20%	0.20%	0.20%	98.2	98.5	98.2
Esophagus	SFO	2	0	-0.20%	0.00%	0.00%	100	100	100
	3	0	0.00%	0.00%	0.00%	100	100	100	
		1	5	0.00%	0.00%	-0.20%	100	100	100
Lung	SFO	2	5	0.00%	0.20%	-0.20%	100	100	100
		3	5	0.20%	0.20%	0.20%	100	100	100
		1	5	0.00%	-0.10%	0.00%	100	100	100
Lung	MFO	2	5	0.10%	0.00%	0.00%	100	100	100
Lung	aro	3	5	0.00%	0.00%	0.20%	98.6	97.2	97.9
		4	5	0.00%	0.00%	-0.20%	100	100	100
		1	0	0.00%	0.00%	+0.30%	100	100	100
Abdomen	MFO	2	2	0.00%	0.00%	0.00%	100	100	100
		3	0	0.00%	0.00%	+0.20%	100	100	100

Between non-breath-hold and breath-hold (reference) plans:

The maximum percent difference of point dose measurements: 0.4%
The lowest gamma passing rate: 97.2%

Patient instruction:

· How to breathe and hold the breath through the spirometer

Set breath-hold level:

· Find the deepest inspiration breath-hold (DIBH) 70% to 80% of DIBH will be set as the breath-hold level

· Acquire 3-5 breath holds to establish the deep inspiration breath-hold level (DIBH)

1002 - 1023	NNN			
		•	And the second s	0
75%		222)		Î

- Reduce the selected level to 75-80%
 - More comfortable More reproducible
 - 75% is the default value
 - · It can be adjusted
- · Patient breath-hold practice (reproducibility)

DHIH	and the second s		EU	
25%				
	AAAA			
Normal breathing				75% value
Ropinstory capacity of	-			- 35
		9	mar allera	1

- EX 🔺

Part 1: Co UNIVERSITY #MARYLAND Gated Voluntary Breath Hold: Process Overview

SDX Treatment Process:

Patient instruction:

Respiratory

· How to breathe and hold the breath through the spirometer

Set breath-hold level:

· Find the deepest inspiration breath-hold (DIBH) · 70% to 80% of DIBH will be set as the breathhold level

Initial CT simulation:

- · SDX breath-hold system
- Normal 4D-CT (as a backup treatment)

UNIVERSITY # MARYLAND

Why Did We Need a Backup Plan?

- First ProBeam center using SDX system (March 2018)

Part 1: Con

- SDX v2.06
- Connectivity & software issues of SDX system
- One SDX device in one of the treatment rooms
 - SDX problem
 - · Treatment room problem
- Upgraded to v3.03 and then v3.11 (2019)
 - Much less connectivity & software issues
 - Bought the second SDX system

		100.04.00	E. (c)	-	- 14 /
100	P.0.18-				
	-	1000			
		- Contractor 100	mar.		
		1			

UNIVERSITY of MARYLAND

Gated Voluntary Breath Hold: Process Overview

SDX Treatment Process:

Treatment planning on both image sets:

SDX plan

· Normal plan (4DCT, compression belt) as a backup plan

Physician plan evaluation

· kV and CBCT images will be acquired at the pre-defined breath-hold level Treatment:

Part 1: Con

· with the automatic gating module active and connected to the ProBeam system

UNIVERSITY #MARYLAND SCHOOL OF MEDICINE Image Guidance and Treatment For ProBeam system: đ * • IGRT (manual) Stop the imaging n – kV

ing & Ing

- CBCT (small FoV- full fan, ~30 secs)

-

- · Treatment: (automatic) - Automatic Gating Module immediately stops the beam

- Monitoring:

 Weekly QA-CT: tumor response, anatomical changes

UNIVERSITY#MARYLAND =

Introduction Part 1: Commissioning & Implementation SDX Patients Summary

- First SDX patient: March 2018
- Total number of referred patients = 62 (until June 2019)
 - 14 patients excluded
 Couldn't hold breath > 20 seconds
 - 48 patients underwent SDX simulation
 - · 45 patients either treated or will be treated with SDX plans
 - For 2 patients non-breath-hold plan was chosen over the breath-hold plan
 - Higher dose to the heart due to tumor location
 - 1 patient couldn't tolerate breath-hold treatment and switched to non-breath-hold plan.

	-
Status	Number of Patients
Treated	37
** * * * *	

In planning phase	3
Site	Number of Patients
Liver	20
Mediastinum/Lung	14
Abdomen	5
Paparaac	2

Esophagus

3

UNIVERSITY & MARYLAND SCHOOL OF MEDICINE

Part 1: Summary & Recommendations

- 14
- The Smaller the target, the easier to implement this procedure
 Preferably < 2 minutes delivery time per field (3-4 breath-holds)

For any moving tumor due to respiratory motion
 Patient should be able to hold breath >25 seconds (for current ProBeam system)

· Ask patient to practice breath-hold before coming for initial CT and also treatment

Part 1: Co

- · Make two treatment plans (SDX and normal) at the beginning
- System reliability and limitations
- Image guidance
 kV & CBCT (small FoV- full fan) if patient can hold the breath for 30-35 seconds
- Weekly QA-CT
 umor response, anatomical changes

UNIVERSITY (MARYLAND)

Breath-hold vs Non-Breath-hold Plans

Part 2: Dos etric Com

Breath-hold (BH) technique

- Mitigates motion of the target
 Minimizes target margins
 Improves normal-tissue sparing

Before SDX upgrade and the second SDX system purchase

- One SDX device in one of the treatment rooms
 - · SDX problem (connection and software issues) · Treatment room problem
- Therefore, for each patient we had a backup plan on 4DCT

Purpose:

.

We investigate the dosimetric comparison between breath-hold and non-breath-hold plans.

UNIVERSITY # MARYLAND Breath-hold vs Non-Breath-hold Plans · Twenty-seven patients treated with SDX system were used Site Number of Patients

Part 2: I

The breath-hold	i level	was	set	to	75%	of	DIBH	
-----------------	---------	-----	-----	----	-----	----	------	--

Liver	11
Mediastinum/Lung	10
Abdomen	3
Pancreas	2
Esophagus	1

- · Clinically acceptable were created
 - · Breath-hold plan (breath-hold CT)
 - · Non-breath-hold plan (4D-CT)

· The dose-volume histograms (DVH) of the two plans were compared for OAR sparing

- · Mean dose: Liver, stomach, kidney, esophagus, heart
- · Max dose: Small bowel, large bowel, heart, spinal cord

UNIVERSITY #MANYLAND Indicate of Mathematication Part 2 Desired Computers Part 2 Desired Compute

Summary of 27 patients data

Parameter	Target or OAR
	Initial Target
Volume	(CTV1/ITV1)
(cc)	SFB Target
	(CTV2/ITV2)
	Liver
Mean Dose	Stomach
(cGy)	Kidney
(coy)	Esophagus
	Heart
V20 (%)	Lung
	Small Bowel
Max Dose (cGy)	Large Bowel
	Heart
	Spinal Cord

UNIVERSITY & MARYLAND

Breath-hold vs Non-Breath-hold Plans

Part 2: Desimetric Comparison

Part 2: Dosimetric Comparison

Summary of 27 patients data

Target or OAR	Breath-Hold Plan	Non-Breath- Hold Plan
Initial Target (CTV1/ITV1)	238.0 ± 251.0	344.9 ± 376.8
SFB Target (CTV2/ITV2)	99.1 ± 121.1	145.2 ± 164.0
Liver	730.7 ± 817.8	886.1 ± 912.4
Stomach	624.5 ± 1105.1	1039.5 ± 1717.9
Kidney	187.2 ± 344.8	309.7 ± 444.5
Esophagus	876.6 ± 846.2	959.8 ± 938.4
Heart	276.0 ± 298.7	412.4 ± 460.2
Lung	6.74% ± 5.79%	10.74% ± 8.73%
Small Bowel	1504.2 ± 2018.7	1952.5 ± 1967.2
Large Bowel	779.0 ± 1315.7	1938.9 ± 1988.6
Heart	3062.4 ± 1830.6	3277.7 ± 1843.4
Spinal Cord	1155.5 ± 1353.0	1396.5 ± 1447.8
	Initial Target (CTV U/ITV1) SFB Target (CTV2/ITV2) Liver Stomach Kidney Esophagus Heart Lung Small Bowel Large Bowel Heart	Target of OAR Pan Initial Target (CTY UTV) 258.0 ± 251.0 (CTY UTV) 258.0 ± 251.0 (CTY UTV) SB Target (CTY UTV) 99.1 ± 121.1 (CTV) 121.2 (CTV) 121.2 (CTV) Stomech 62.45 ± 105.1 (CTV) 157.2 ± 144.8 (CTV) 127.2 ± 144.8 (CTV) 127.2 ± 144.8 (CTV) 127.2 ± 144.8 (CTV) 127.2 ± 144.8 (CTV) 127.0 ± 245.7 (CTV) 127.0 ± 24.7 (CTV) 127.0 ± 24.7

Absolute values

UNIVERSITY & MARYLAND

Breath-hold vs Non-Breath-hold Plans

Summary of 27 patients data

Bereath-Hold Non-Breath- hol	tatio of Breath- ld Normalized to on-Breath-Hold
	(%)
Volume (CTV1/ITV1) 238.0 ± 251.0 344.9 ± 376.8 66	9.72% ± 23.80%
(cc) SFB Target (CTV2/ITV2) 99.1 ± 121.1 145.2 ± 164.0 66	9.22% ± 22.12%
Liver 730.7 ± 817.8 886.1 ± 912.4 71	1.85% ± 27.36%
Mean Dose Stomach 624.5 ± 1105.1 1039.5 ± 1717.9 71	1.39% ± 52.07%
Kidney 187.2 ± 344.8 309.7 ± 444.5 66	6.82% ± 35.79%
Esophagus 876.6 ± 846.2 959.8 ± 938.4 90	0.53% ± 16.20%
Heart 276.0 ± 298.7 412.4 ± 460.2 75	5.27% ± 23.43%
V20 (%) Lung 6.74% ± 5.79% 10.74% ± 8.73% 76	6.79% ± 56.33%
Small Bowel 1504.2 ± 2018.7 1952.5 ± 1967.2 81	1.41% ± 44.25%
Max Dose Large Bowel 779.0 ± 1315.7 1938.9 ± 1988.6 58	8.26% ± 39.96%
(cGy) Heart 3062.4 ± 1830.6 3277.7 ± 1843.4 93	3.99% ± 16.18%
Spinal Cord 1155.5 ± 1353.0 1396.5 ± 1447.8 83	3.82% ± 51.41%

Absolute values Normalized values

UNIVERSITY #MARYLAND =

Breath-hold vs Non-Breath-hold Plans

tric Comparison

Summary of 27 patients data

Parameter	Target or OAR	Breath-Hold Plan	Non-Breath- Hold Plan	Ratio of Breath- hold Normalized to Non-Breath-Hold (%)	p-value	Number of Patients
Volume	Initial Target (CTV1/ITV1)	238.0 ± 251.0	344.9 ± 376.8	69.72% ± 23.80%	<0.05	27
(cc)	SFB Target (CTV2/ITV2)	99.1 ± 121.1	145.2 ± 164.0	69.22% ± 22.12%	<0.05	11
	Liver	730.7 ± 817.8	886.1 ± 912.4	71.85% ± 27.36%	< 0.05	21
Mean Dose	Stomach	624.5 ± 1105.1	1039.5 ± 1717.9	71.39% ± 52.07%	0.06	15
(cGy)	Kidney	187.2 ± 344.8	309.7 ± 444.5	66.82% ± 35.79%	< 0.05	16
(coy)	Esophagus	876.6 ± 846.2	959.8 ± 938.4	90.53% ± 16.20%	0.06	21
	Heart	276.0 ± 298.7	412.4 ± 460.2	75.27% ± 23.43%	< 0.05	24
V20 (%)	Lung	6.74% ± 5.79%	10.74% ± 8.73%	76.79% ± 56.33%	< 0.05	20
	Small Bowel	1504.2 ± 2018.7	1952.5 ± 1967.2	81.41% ± 44.25%	0.17	13
Max Dose	Large Bowel	779.0 ± 1315.7	1938.9 ± 1988.6	58.26% ± 39.96%	<0.05	12
(cGy)	Heart	3062.4 ± 1830.6	3277.7 ± 1843.4	93.99% ± 16.18%	0.06	24
	Spinal Cord	1155.5 ± 1353.0	1396.5 ± 1447.8	83.82% ± 51.41%	< 0.05	26

UNIVERSITY #MARYLAND =

Breath-hold vs Non-Breath-hold Plans

Ratio of Breath-hold Normalized to Non-Breath-Hold (%)

Average reduction of 30% in the irradiated volume with SDX

Part 2: Dosimetric Comparison

Breath-hold Non-breath-hold

UNIVERSITY #MARYLAND Breath-hold vs Non-Breath-hold Plans

Part 2: D

Ratio of Breath-hold Normalized to Non-Breath-Hold (%)

Avera	age mean dose reduction
with	SDX:
•	Stomach: 28%
•	Kidney: 32%
•	Esophagus: 10%
•	Heart: 25%
Breath-hol	ld
Non-breat	h-hold

UNIVERSITY #MARYLAND SCHOOL OF MEDICINE

Breath-hold vs Non-Breath-hold Plans

Ratio of Breath-hold Normalized to Non-Breath-Hold (%)

- · Liver group (11 patients)
- Mediastinum/lung group (10 patients)

Site	Number of Patients
Liver	11
Mediastinum/Lung	10
Abdomen	3
Pancreas	2
Esophagus	1

Part 2: I

Liver group (11 patients) Ratio of Breath-hold Normalized to Non-Breath-Hold (%)

- Reduction:
- Target Volume ~25-40%
- Mean OAR Dose ~ 20%
 Max OAR Dose ~ 5-50%
- Lung V20 ~ 35%

UNIVERSITY & MARYLAND

Part 1: Commissioning & Implementation Part 2: Desimetric Comparison Part 3: 8

Breath-hold vs Non-Breath-hold Plans

Mediastinum/lung group (10 patients) Ratio of Breath-hold Normalized to Non-Breath-Hold (%)

- Reduction:
- Target Volume ~15-25%
- Mean OAR Dose ~ 5-50%
- Max OAR Dose ~ 5-25%
- Lung V20 ~ 35%

UNIVERSITY#MARYLAND

Part 2: Conclusions

- Breath-hold plans can significantly reduce the treated target volume to ~70-80%.
 - Liver group: 60-75%
 - Mediastinum/lung group: 75-85%
- For organs most affected by respiratory motion (lung and liver), BH technique consistently reduced dose by 20-25%
- · For other OARs, BH plans resulted in lower
 - Mean dose by as much as 10-35%.
 - Max dose by as much as 5-40%.

UNIVERSITY #MARYLAND SCHOOL OF MEDICINE			
	Part 1: Commissioning & Implementation	Part 2: Dosimetric Comparisons	Part 3: Breath-hold Plan Reproducibility
 Motion Management Spirometry 	• Preparation & Patient Training	Breath Hold vs Non- Breath Hold	Breath Hold Plans
System	• Initial SIM	• Patient Data & Analysis	Patient Data & QACT Evaluation
 Gated Voluntary Breath Hold (SDX): Process Overview 	 Image Guidance and Treatment 	• Results: o Liver o Lung	Results: Target Coverage OAR Dose

UNIVERSITY #MARYLAND =

Breath-hold Plan Reproducibility

Part 3: Reproducibility

Breath-hold (BH) technique

Mitigates motion of the target
 Minimizes target margins
 Improves normal-tissue sparing

Do we need to monitor the reproducibility of the plan?

Can we use the same plan for the whole course of treatments?

Our recommendation for SDX plans:

Weekly QA-CT

Tumor response, anatomical changes Assessing the reproducibility of SDX plans

We investigate the reproducibility of breath-hold plans using frequent quality assurance CT scans (QACTs).

UNIVERSITY of MARYLAND

QACT Evaluation

At MPTC, decision for replan or repeat of QACT based on:

- <u>Target V95%</u> decreased by <u>more than 5%</u> of the initial plan, or
- <u>Dose to critical organs at risk (OARs) increased significantly</u> (physician decision)

To evaluate the reproducibility of BH plan, we looked at

- · DVH variations of QACT plans with respect to the initial CT plan
- Errors reported as percent difference (for target) and absolute dose difference (for OARs) with
 respect to initial plan
- · Error window (EW) required to cover the 95th percentile variations

UNIVERSITY & MARYLAND

Target Coverage

Mean dose → EW ~ 1.8% V95% → EW ~ 3.7%

Part 3: Reproducibility

2.7% 2.0% 1.0% 0.0% ×

-1.0% -1.5% -2.0% -2.5% -2.5%

Two replans due to significant change in heart dose as a result of anatomical changes

UNIVERSITY #MARYLAND SCHOOL OF MEDICINE

Part 3: Summary & Conclusions

Part 3: Reproducibility

- Out of 30 patient plans:
 - We had 4 replans due to tumor volume and/or anatomical changes
- Breath-hold technique can manage respiratory motion

 Lung V20 and liver mean dose are comparable to other organs
- In the absence of anatomical changes, coverage and OAR doses were reproducible within clinically acceptable margins
- · Using 5 mm robust evaluation gives fairly reproducible plan
- Small variations in the target coverage (V95%)
- · Larger variations observed in maximum and minimum doses for the target and OARs

