Motion Mitigation in Spot Scanning Proton Therapy with An Automated Gating System and Voluntary Breath Holding

Sina Mossahebi
Maryland Proton Treatment Center
Department of Radiation Oncology
University of Maryland School of Medicine
Baltimore, Maryland

Disclosures
No Conflicts of Interest

Outline

Introduction
• Motion Management
 o Spirometry System
• Gated Voluntary Breath Hold (SDX): Process Overview

Part 1: Commissioning & Implementation
• Preparation & Patient Training
 o Initial SIM
• Image Guidance and Treatment

Part 2: Dosimetric Comparisons
Breath Hold vs Non-Breath Hold
• Patient Data & Analysis
• Results:
 o Liver
 o Lung

Part 3: Breath Hold Plan Reproducibility
Breath Hold Plans
• Patient Data & QACT Evaluation
• Results:
 o Target Coverage
 o OAR Dose
Maryland Proton Treatment Center (MPTC)
University of Maryland

Varian ProBeam
5 room facility (4 gantries, 1 fixed beam)
- First treatment in February 2016
- 4 of 5 treatment rooms open and treating

- In all treatment gantries:
 - Pencil Beam Scanning (IMPT)
 - Volumetric imaging (cone beam CT)

 Siemens Definition Edge DECT
Dual Spiral Scan & TwinBeam

Siemens Aera MRI Scanner
1.5 T

SDX breath-hold system
Dyn'R
- First SDX patient: March 2018
- # of SDX patients = 45
- Liver, lung, esophagus, ...

Deep Thermal Therapy (DTT)
BSD-2000, Pyrexar
- First DTT patient: Oct 2018
- # of DTT patients = 20
- Pelvic and abdominal regions

Special Treatment

Introduction
- Motion Management
 - Spinnometry System
- Gated Voluntary Breath Hold (SDX): Process Overview

Part 1: Commissioning & Implementation
- Preparation & Patient Training
- Initial SIM
- Image Guidance and Treatment

Part 2: Dosimetric Comparisons
- Breath Hold vs Non-Breath Hold
- Patient Data & Analysis
- Results:
 - Liver
 - Lung

Part 3: Breath hold Plan Reproducibility
- Patient Data & QACT Evaluation
- Results:
 - Target Coverage
 - OAR Dose
Motion Management

- External breathing metrics have been demonstrated useful in
 - Predicting the tumor motion
 - Reducing respiratory motion uncertainties
 - Sparing organs at risk

- Breath-hold (BH) technique
 - Mitigates motion of the target
 - Minimizes target margins
 - Improves normal-tissue sparing

The spirometry system monitors the patient’s breathing phase in real time.

Advantages:
- Clinical feasibility
- Reduces tumor motion
- Reduces treatment margins
- Audio-visual feedback improves reproducibility
- Gated treatment delivery
- Accurate surrogate for internal respiratory motion

Disadvantages:
- Signal drift
- Increase in the volumetric tidal flow compared to normal breathing (without spirometer)
- Uncomfortable for patients
- Gating module is not compatible for all treatment delivery systems
- Still is only a surrogate
SDX System

At MPTC we use SDX system (Dyn'R, France)
- Voluntarily breath-hold technique

SDX System
- Airflow tube
- Filter
- Mouthpiece
- Nose clip
- Video glasses (goggle)

SDX Calibration & Calibration Check

Calibration Syringe
A daily calibration/verification must be done on the SDX System
- Using a 3-Liter calibration syringe serving as a volumetric reference

- Check signal drift (problem of spirometry system)
SDX Commissioning

The SDX system with automatic gating module was commissioned at MPTC
- **Goal:** Check the effect of breathing interruption on delivered dose.
 - Point and 2D-planar dose measurements of 5 gated plans (3-4 fields per plan) with and without range shifter.

<table>
<thead>
<tr>
<th>Site</th>
<th>Beam Delivery Type</th>
<th># of Fields</th>
<th>Range Shifter (cm)</th>
<th>Point Dose %Diff</th>
<th>Gamma Index Passing Rate % [1%/1mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophagus</td>
<td>SFO</td>
<td>1</td>
<td>0</td>
<td>0.20%</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0.20%</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0.20%</td>
<td>100</td>
</tr>
<tr>
<td>Lung</td>
<td>MFO</td>
<td>4</td>
<td>5 cm</td>
<td>0.00%</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5 cm</td>
<td>0.20%</td>
<td>100</td>
</tr>
<tr>
<td>Abdomen</td>
<td>MFO</td>
<td>3</td>
<td>None / 5 cm</td>
<td>0.00%</td>
<td>100</td>
</tr>
</tbody>
</table>

- For each field: three measurements with 2, 3 and 5 breath-hold were done and evaluated against the one without breath-hold (reference).
 - Point dose (% difference)
 - 2D-planar dose gamma passing rate (1%/1mm)

Results:

Between non-breath-hold and breath-hold (reference) plans:
- The maximum percent difference of point dose measurements: 0.4%
- The lowest gamma passing rate: 97.2%
Gated Voluntary Breath Hold: Process Overview

SDX Treatment Process:

1st Day

- Preparation & Patient training
- CT imaging

Patient instruction:
- How to breathe and hold the breath through the spirometer

Set breath-hold level:
- Find the deepest inspiration breath-hold (DIBH)
- 70% to 80% of DIBH will be set as the breath-hold level

Preparation: Set breath-hold level and training

- Acquire 3-5 breath holds to establish the deep inspiration breath-hold level (DIBH)
- Reduce the selected level to 75-80%
 - More comfortable
 - More reproducible
 - 75% is the default value
 - It can be adjusted
- Patient breath-hold practice (reproducibility)

Initial CT simulation:
- SDX breath-hold system
- Normal 4D-CT (as a backup treatment)
Initial Simulation

- Imaging (CT):
 - SDX CT (manual)
 - Patient holds the breath at pre-established breath-hold level
 - The therapist starts CT scan acquisition
 - If patient goes out of breath-hold level, the therapist stops the imaging manually
 - Normal 4D-CT (backup plan)

Why Did We Need a Backup Plan?

- First ProBeam center using SDX system (March 2018)
- SDX v2.06
 - Connectivity & software issues of SDX system
- One SDX device in one of the treatment rooms
 - SDX problem
 - Treatment room problem
- Upgraded to v3.03 and then v3.11 (2019)
 - Much less connectivity & software issues
 - Bought the second SDX system

Gated Voluntary Breath Hold: Process Overview

SDX Treatment Process:

- Preparation & Patient training
- CT Imaging
- Treatment Planning
 - Two plans
 - SDX plan
 - Normal plan (4DCT, compression belt) as a backup plan

Treatment planning on both image sets:
- SDX plan
- Normal plan (4DCT, compression belt) as a backup plan

Physician plan evaluation
Gated Voluntary Breath Hold: Process Overview

SDX Treatment Process:

1st Day
- Preparation & Patient training
- CT Imaging

Treatment Planning
- Two plans
 - SDX plan
 - Normal plan
 - kV
 - Compression belt

Treatment day
- IGRT
 - kV
 - CBCT
 - Needs 30-35 sec breath hold
- Treatment

Image guidance:
- kV and CBCT images will be acquired at the pre-defined breath-hold level

Treatment:
- with the automatic gating module active and connected to the ProBeam system

For ProBeam system:
- IGRT (manual)
 - Stop the imaging manually
 - kV
 - CBCT (small FoV - full fan, ~30 secs)
- Treatment: (automatic)
 - Automatic Gating Module: immediately stops the beam
- Monitoring:
 - Weekly QA-CT: tumor response, anatomical changes

Implementation

Consultation for BH treatment
- SDX preparation and patient training
- ~30-45 minutes
- Physician & physicist evaluation of possibility of SDX treatment
- ~10 minutes
- Yes: BH and non-BH CT simulation
- ~10 minutes
- Non-BH treatment
- ~30 minutes
- Yes
- BH treatment
- ~45 minutes
- No: BH and non-BH treatment planning
- ~6 hours
- BH treatment planning
- ~8 hours
- Non-BH treatment planning
- ~8 hours
- Non-BH CT simulation
- ~10 minutes
- No
SDX Patients Summary

- First SDX patient: March 2018
- Total number of referred patients = 62 (until June 2019)
 - 14 patients excluded
 - 48 patients underwent SDX simulation
 - 45 patients: either treated or will be treated with SDX plan
 - For 2 patients, non-breath-hold plan was chosen over the breath-hold plan
 - Higher dose to the heart due to tumor location
 - 1 patient couldn’t tolerate breath-hold treatment and switched to non-breath-hold plan

<table>
<thead>
<tr>
<th>Status</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>47</td>
</tr>
<tr>
<td>Under treatment</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>20</td>
</tr>
<tr>
<td>Mediastinum/Lung</td>
<td>14</td>
</tr>
<tr>
<td>Abdomen</td>
<td>5</td>
</tr>
<tr>
<td>Pancreas</td>
<td>3</td>
</tr>
<tr>
<td>Esophagus</td>
<td>3</td>
</tr>
</tbody>
</table>

Part 1: Summary & Recommendations

- What sites?
 - For any moving target due to respiratory motion
 - Patient should be able to hold breath > 25 seconds for current ProBeam system
- The smaller the target, the easier to implement this procedure
 - Preferably < 2 minutes delivery time per field (3-4 breath-holds)
- Ask patient to practice breath-hold before coming for initial CT and also treatment
- Make two treatment plans (SDX and normal) at the beginning
 - Synergy reliability and limitations
- Image guidance
 - kV & CBCT (small FoV, full field if patient can hold the breath for 30-35 seconds
- Weekly QA-CT
 - Tumor response, anatomical changes
Introduction

• Motion Management
 • Spirometry System
• Gated Voluntary Breath Hold (SDX): Process Overview

Part 1: Commissioning & Implementation

• Preparation & Patient Training
 • Initial SIM
• Image Guidance and Treatment

Part 2: Dosimetric Comparisons

Breath Hold vs Non-Breath Hold
• Patient Data & Analysis
 • Results:
 • Liver
 • Lung

Part 3: Breath-Hold Plan Reproducibility

Breath Hold Plans
• Patient Data & QACT Evaluation
 • Results:
 • Target Coverage
 • OAR Dose

Purpose:
We investigate the dosimetric comparison between breath-hold and non-breath-hold plans.

Before SDX upgrade and the second SDX system purchase

– One SDX device in one of the treatment rooms
 • SDX problem (connection and software issues)
 • Treatment room problem

 Therefore, for each patient we had a backup plan on 4DCT

Breath-hold (BH) technique
• Minimizes motion of the target
• Minimizes target margins
• Improves normal-tissue sparing

Site Number of Patients

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>11</td>
</tr>
<tr>
<td>Mediastinum/Lung</td>
<td>10</td>
</tr>
<tr>
<td>Abdomen</td>
<td>3</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2</td>
</tr>
<tr>
<td>Esophagus</td>
<td>1</td>
</tr>
</tbody>
</table>

Twenty-seven patients treated with SDX system were used

The breath-hold level was set to 75% of DIBH

Clinically acceptable were created
• Breath-hold plan (breath-hold CT)
• Non-breath-hold plan (4D-CT)

The dose-volume histograms (DVH) of the two plans were compared for OAR sparing
• Mean dose: Liver, stomach, kidney, esophagus, heart
• Max dose: Small bowel, large bowel, heart, spinal cord
Summary of 27 patients data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target or OAR</th>
<th>Breath-hold Plans</th>
<th>Non-Breath-hold Plans</th>
<th>Ratio of Breath-hold Normalized to Non-Breath-hold Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (cc)</td>
<td>Total Target</td>
<td>201.0 ± 21.0</td>
<td>100.0 ± 13.0</td>
<td>100.0% ± 12.0%</td>
</tr>
<tr>
<td></td>
<td>CTV1/ITV1</td>
<td>105.0 ± 22.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>CTV2/ITV2</td>
<td>106.0 ± 20.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>300.0 ± 30.0</td>
<td>150.0 ± 15.0</td>
<td>50.0% ± 15.0%</td>
</tr>
<tr>
<td></td>
<td>Small Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
<tr>
<td></td>
<td>Large Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
</tbody>
</table>

Summary of 27 patients data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target or OAR</th>
<th>Breath-hold Plans</th>
<th>Non-Breath-hold Plans</th>
<th>Ratio of Breath-hold Normalized to Non-Breath-hold Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (cc)</td>
<td>Total Target</td>
<td>201.0 ± 21.0</td>
<td>100.0 ± 13.0</td>
<td>100.0% ± 12.0%</td>
</tr>
<tr>
<td></td>
<td>CTV1/ITV1</td>
<td>105.0 ± 22.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>CTV2/ITV2</td>
<td>106.0 ± 20.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>300.0 ± 30.0</td>
<td>150.0 ± 15.0</td>
<td>50.0% ± 15.0%</td>
</tr>
<tr>
<td></td>
<td>Small Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
<tr>
<td></td>
<td>Large Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
</tbody>
</table>

Summary of 27 patients data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target or OAR</th>
<th>Breath-hold Plans</th>
<th>Non-Breath-hold Plans</th>
<th>Ratio of Breath-hold Normalized to Non-Breath-hold Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (cc)</td>
<td>Total Target</td>
<td>201.0 ± 21.0</td>
<td>100.0 ± 13.0</td>
<td>100.0% ± 12.0%</td>
</tr>
<tr>
<td></td>
<td>CTV1/ITV1</td>
<td>105.0 ± 22.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>CTV2/ITV2</td>
<td>106.0 ± 20.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>300.0 ± 30.0</td>
<td>150.0 ± 15.0</td>
<td>50.0% ± 15.0%</td>
</tr>
<tr>
<td></td>
<td>Small Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
<tr>
<td></td>
<td>Large Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
</tbody>
</table>

Summary of 27 patients data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target or OAR</th>
<th>Breath-hold Plans</th>
<th>Non-Breath-hold Plans</th>
<th>Ratio of Breath-hold Normalized to Non-Breath-hold Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (cc)</td>
<td>Total Target</td>
<td>201.0 ± 21.0</td>
<td>100.0 ± 13.0</td>
<td>100.0% ± 12.0%</td>
</tr>
<tr>
<td></td>
<td>CTV1/ITV1</td>
<td>105.0 ± 22.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>CTV2/ITV2</td>
<td>106.0 ± 20.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>300.0 ± 30.0</td>
<td>150.0 ± 15.0</td>
<td>50.0% ± 15.0%</td>
</tr>
<tr>
<td></td>
<td>Small Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
<tr>
<td></td>
<td>Large Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
</tbody>
</table>

Summary of 27 patients data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target or OAR</th>
<th>Breath-hold Plans</th>
<th>Non-Breath-hold Plans</th>
<th>Ratio of Breath-hold Normalized to Non-Breath-hold Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (cc)</td>
<td>Total Target</td>
<td>201.0 ± 21.0</td>
<td>100.0 ± 13.0</td>
<td>100.0% ± 12.0%</td>
</tr>
<tr>
<td></td>
<td>CTV1/ITV1</td>
<td>105.0 ± 22.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>CTV2/ITV2</td>
<td>106.0 ± 20.0</td>
<td>50.0 ± 13.0</td>
<td>50.0% ± 13.0%</td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td>300.0 ± 30.0</td>
<td>150.0 ± 15.0</td>
<td>50.0% ± 15.0%</td>
</tr>
<tr>
<td></td>
<td>Small Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
<tr>
<td></td>
<td>Large Bowel</td>
<td>150.0 ± 15.0</td>
<td>75.0 ± 7.5</td>
<td>50.0% ± 7.5%</td>
</tr>
</tbody>
</table>
Breath-hold vs Non-Breath-hold Plans

Summary of 27 patients data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target or OAR</th>
<th>Breath Hold</th>
<th>Non-Breath Hold</th>
<th>Ratio of Breath-hold Normalized to Non-Breath Hold (%)</th>
<th>p-value</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (cc)</td>
<td>Total Target (CTV1/ITV1)</td>
<td>238.0 ± 251.0</td>
<td>344.9 ± 376.8</td>
<td>69.72% ± 23.80%</td>
<td><0.05</td>
<td>27</td>
</tr>
<tr>
<td>Mean Dose (cGy)</td>
<td>Liver</td>
<td>99.1 ± 121.1</td>
<td>145.2 ± 164.0</td>
<td>69.22% ± 22.12%</td>
<td><0.05</td>
<td>11</td>
</tr>
<tr>
<td>Max Dose (cGy)</td>
<td>Small Bowel</td>
<td>1504.2 ± 2018.7</td>
<td>1952.5 ± 1967.2</td>
<td>81.41% ± 44.25%</td>
<td>0.17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Large Bowel</td>
<td>779.0 ± 1315.7</td>
<td>1938.9 ± 1988.6</td>
<td>58.26% ± 39.96%</td>
<td><0.05</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Heart</td>
<td>3062.4 ± 1830.6</td>
<td>3277.7 ± 1843.4</td>
<td>93.99% ± 16.18%</td>
<td>0.06</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Spinal Cord</td>
<td>1155.5 ± 1353.0</td>
<td>1396.5 ± 1447.8</td>
<td>83.82% ± 51.41%</td>
<td><0.05</td>
<td>26</td>
</tr>
<tr>
<td>V20 (%)</td>
<td>Lung</td>
<td>6.74% ± 5.79%</td>
<td>10.74% ± 8.73%</td>
<td>76.79% ± 56.33%</td>
<td><0.05</td>
<td>20</td>
</tr>
</tbody>
</table>

Breath-hold vs Non-Breath-hold Plans

Average reduction of 30% in the irradiated volume with SDX

Breath-hold vs Non-Breath-hold Plans

Average max dose reduction with SDX:
- Small Bowel: 20%
- Large Bowel: 42%
- Heart: 5%
- Spinal cord: 18%

* p < 0.05
Breath-hold vs Non-Breath-hold Plans

Ratio of Breath-hold Normalized to Non-Breath-hold (%)

Average reduction with SDX:
- Lung V20: 25%
- Liver Mean dose: 30%

Breath-hold
Non-Breath-hold

* p < 0.05 10 patients 21 patients

Breath-hold vs Non-Breath-hold Plans

Ratio of Breath-hold Normalized to Non-Breath-hold (%)

Average mean dose reduction with SDX:
- Stomach: 28%
- Kidney: 32%
- Esophagus: 10%
- Heart: 25%

Breath-hold
Non-Breath-hold

* p < 0.05

Breath-hold vs Non-Breath-hold Plans

Ratio of Breath-hold Normalized to Non-Breath-hold (%)

- Liver group (11 patients)
- Mediastinum/lung group (10 patients)

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>11</td>
</tr>
<tr>
<td>Mediastinum/Lung</td>
<td>10</td>
</tr>
<tr>
<td>Abdomen</td>
<td>3</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2</td>
</tr>
<tr>
<td>Esophagus</td>
<td>1</td>
</tr>
</tbody>
</table>
Liver group (11 patients)
Ratio of Breath-hold Normalized to Non-Breath-hold (%)

Reduction:
- Target Volume ~25-40%
- Mean OAR Dose ~ 20%
- Max OAR Dose ~ 5-50%
- Lung V20 ~ 35%

Mediastinum/lung group (10 patients)
Ratio of Breath-hold Normalized to Non-Breath-hold (%)

Reduction:
- Target Volume ~15-25%
- Mean OAR Dose ~ 5-50%
- Max OAR Dose ~ 5-25%
- Lung V20 ~ 35%

Part 2: Conclusions

- Breath-hold plans can significantly reduce the treated target volume to ~70-80%.
 - Liver group: 60-75%
 - Mediastinum/lung group: 75-85%

- For organs most affected by respiratory motion (lung and liver), BH technique consistently reduced dose by 20-35%

- For other OARs, BH plans resulted in lower
 - Mean dose by as much as 10-35%
 - Max dose by as much as 5-40%
Introduction

- Motion Management
 - Spirometry System
- Gated Voluntary Breath Hold (SDX): Process Overview

Part 1: Commissioning & Implementation

- Preparation & Patient Training
- Initial SIM
- Image Guidance and Treatment

Breath Hold vs Non-Breath Hold
- Patient Data & Analysis
- Results:
 - Liver
 - Lung

Part 2: Dosimetric Comparisons

Breath Hold vs Non-Breath Hold
- Patient Data & Analysis
- Results:
 - Liver
 - Target Coverage
 - OAR Dose

Part 3: Breath-Hold Plan Reproducibility

Breath-hold Plan Reproducibility

- Mitigates motion of the target
- Minimizes target margins
- Improves normal-tissue sparing

Do we need to monitor the reproducibility of the plan?

Can we use the same plan for the whole course of treatments?

Our recommendation for SDX plans:

Weekly QA-CT

Tumor response, anatomical changes

Assessing the reproducibility of SDX plans

QACT Patients Summary

We use 5mm robust evaluation for SDX plans:

- Reproducibility of the breath-hold plans was assessed by
 - Using QACT scans for each patient
 - Recalculating the initial treatment plan on the QACT scans.

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of Patients</th>
<th>Number of QACTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>Mediastinum/Lung</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>Abdomen</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>Esophagus</td>
<td>1</td>
<td>33</td>
</tr>
</tbody>
</table>

Purpose:

We investigate the reproducibility of breath-hold plans using frequent quality assurance CT scans (QACTs).
QACT Evaluation

At MPTC, decision for replan or repeat of QACT based on:

- Target V95% decreased by more than 5% of the initial plan, or
- Dose to critical organs at risk (OARs) increased significantly (physician decision)

To evaluate the reproducibility of BH plan, we looked at:

- DVH variations of QACT plans with respect to the initial CT plan
- Errors reported as percent difference (for target) and absolute dose difference (for OARs) with respect to initial plan
- Error window (EW) required to cover the 95\(^{th}\) percentile variations

V95, D95, and Mean Dose

- Variation in target coverage (V95) was < 5%
- Mean dose \(\rightarrow\) EW ~ 1.8%
- V95\% \(\rightarrow\) EW ~ 3.7%

Two replans due to change in target coverage and OAR dose as a result of anatomical changes.
Target Coverage

Maximum and Minimum Dose

CTV1 Max dose → EW ~ 5.7%
CTV1 Min dose → EW ~ 18.1%

Larger variations observed in maximum and minimum doses

Introduction

Part 1: Commissioning & Implementation
Part 2: Dosimetric Comparison
Part 3: Reproducibility

OAR Dose

Mean Dose

Heart → EW ~ 1.0 Gy
Esophagus → EW ~ 1.4 Gy
Stomach → EW ~ 0.8 Gy
Kidney → EW ~ 0.3 Gy

Max Dose

Heart → EW ~ 5.1 Gy
Spinal Cord → EW ~ 4.8 Gy
Small Bowel → EW ~ 1.6 Gy
Large Bowel → EW ~ 2.5 Gy

Two replans due to significant change in heart dose as a result of anatomical changes
Lung and Liver

Variation comparable to other organs despite associated respiratory motion

- Lung V20: EW ~ 3.2%
- Liver Mean Dose: EW ~ 0.9 Gy

Part 3: Summary & Conclusions

- Out of 30 patient plans:
 - We had 4 replans due to tumor volume and/or anatomical changes
- Breath-hold technique can manage respiratory motion
 - Lung V20 and liver mean dose are comparable to other organs
- In the absence of anatomical changes, coverage and OAR doses were reproducible within clinically acceptable margins
- Using 5 mm robust evaluation gives fairly reproducible plan
- Small variations in the target coverage (V95%)
- Larger variations observed in maximum and minimum doses for the target and OARs