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Objectives

1. How to calculate LET accurately and
efficiently in IMPT

2. How to use LET in plan quality evaluation in
MPT

3. How to use LET to implement LET-guided
robust optimization in IMPT




HOW TO CALCULATE LET ACCURATELY
AND EFFICIENTLY IN IMPT



LET value in the middle as function of depth calculated using Geant4
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Dose averaged LET:
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Sample LET lateral profile from Geant4 in water for 228.8
MeV and 71.3 MeV at different depths
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Calculate LET in patients using the hybrid 3D model
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Analytical Monte Carlos
Z?il(LETd)j (x,y,2) - Di(x,y,2)
D(x,y,z)

LETd,m(xr Y, Z) = LETd,W(xr Y, Z) X Srel(xr Y, Z)

LET;,,(x,y,2z) =



Comparison between Hybrid 3D analytical, 1D analytical, and
Monte Carlo LET calculation: (1) Prostate

LET distribution Dose distribution
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Diff-1 (new method and MC) 3% 1% 1%
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Performance comparison between hybrid 3D and 1D LET

calculation in 12 patients across various disease sites
3D-3D Gamma Analysis (3mm/2%/10%) and Calculation Time

Hybrid 3D method 1D method passing | hybrid 3D method gMC calculation
passing rate rate calculation time [s] time [s]
405

97.8% 89.5% 76

97.6% 91.9% 50 366
98.8% 90.8% 38 325
97.6% 93.5% 86 469
96.4% 93.3% 29 361
98.0% 93.8% 93 422
97.6% 96.8% 110 1011
98.6% 95.5% 96 182
98.2% 95.7% 190 363
99.2% 97.8% 88 483
96.1% 93.0% 232 301
99.7% 96.5% 655 722
98.041.0% 94.042.5% 145£171 451+218

Dual ES 2680-v3 CPUs and 64GB (2133MHz) RAM



HOW TO USE LET IN PLAN QUALITY
EVALUATION IN IMPT



Use of LET at Mayo Clinic in Arizona

* Every patient receives an LET
calculation

* LET distribution are imported into
Varian Eclipse TPS for display
purposes.

* A planning goal is to keep LET below
6 keV/um within the high dose
region of nearby critical organs.



Computational Environment
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High LET distribution (greater than 6 keV/um)
overlaps within the high dose region
P T e

ITV: Magenta Esophagus: Red Cord: Orange Total Lung: Cyan

High LET distributions are observed in critical organs.



Beam angle change was performed due to LET-guided
plan evaluation in IMPT to minimize the overlap region
of high dose and high LET in critical OARs

Initial plan LET distribution Final plan LET distribution




HOW TO USE LET TO IMPLEMENT LET-
GUIDED ROBUST OPTIMIZATION IN
IMPT



Accounting for setup and range
uncertainties: robust optimization
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LET and uncertainties combined

Nominal
position

* LET will also change
under different
uncertainty
scenarios

moved
anteriorly Q"
5mm

3.5% range
overshoot
and patient
moved
anteriorly by
5mm

More Challenging Problem




Question

Can we find a robust treatment plan,
which also redistribute high LET from
organs at risk to tumors?



LET volume histograms and LET volume
constraints in LET guided robust optimization

Relative volume
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Dose weighted LET

Only the voxels with LET between LET; and LET, are penalized in the LET-guided robust
optimization.



Comparison of the DVH indices of the
treatment plans generated by RO, RO-OAR, and
LETRO
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Comparison of plan robustness of the
treatment plans generated by RO, RO-OAR, and
LETRO
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Comparison of LET dosimetric indices of the
treatment plans generated by RO, RO-OAR, and

LETRO
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Dose distribution
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Why can LET-guided robust optimization redistribute LET
distribution without sacrificing the physical dose
distributions and plan robustness?
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Conclusion

* Hybrid 3D model can calculate the LET accurately
and efficiently in IMPT

* LET-guided plan evaluation is important to
minimize the overlap between high dose and high
ET in IMPT

* LET-guided robust optimization redistributes high
ET from OARs to tumors, thus it potentially
improves tumor control without sacrificing the
physical dose distributions quality and plan
robustness
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